光子学报, 2015, 44 (12): 1216001, 网络出版: 2015-12-23  

单棱镜共光路干涉法制作多结构二维光子准晶

Fabrication of Multi-structure 2D Photonic Quasicrystals by Using Single-prism Common-path Interferometry
作者单位
1 郑州大学 信息工程学院河南省激光与光电信息技术重点实验室, 郑州, 450000
2 郑州大学图书馆, 郑州, 450000
摘要
提出一种共路干涉装置用于复杂结构亚微米尺度光子准晶的大面积制作.改变样品旋转角度和曝光次数, 设计多种不同旋转对称性的准晶结构, 并给出相应的衍射模式以证明其多重旋转对称性.利用该装置可以制作任意复杂结构、任意旋转对称度的准晶结构.同时, 分析了旋转轴和旋转角存在偏差时对准晶结构的影响.另外, 采用该装置实验制作了十重准晶结构, 并用原子力显微镜和衍射测量表征该准晶的长程指向性和十重旋转对称性, 实验结果表明: 十重晶格结构的直径为1.2 μm, 最小结构单元尺寸为377 nm, 与理论设计尺寸1.25 μm和392.5 nm相比, 误差为4%.理论设计和实验结果一致性很好, 对研究以光子带隙为基础的纳米光子学器件具有重要的指导意义.
Abstract
A simple common-path interfering device used for large-area production of complicated photonic quasicrystals in sub-micron scale was presented. The quasicrystalline structures were designed and their diffraction patterns were obtained to prove the multi-fold rotational symmetry. By using the setup, all kinds of quasicrystals with arbitrary complexity and rotational symmetry can be designed and fabricated. Furthermore, ten-fold quasicrystalline structures were produced experimentally. The atomic force microscope measurements and diffraction patterns reveal the long-range directivity and rotational symmetry. The experimental results show that the quasicrystal has a diameter of 1.2 μm for a ten-fold lattice and 377 nm for a minimum unit. Compared with the theoretical data 1.25 μm and 392.5nm, there is a difference of 4%. A good agreement has been obtained between the experimental and theoretical results. This is promising for the investigation on photonic devices based on the photonic bandgaps.
参考文献

[1] ZOOROB M E, CHARLTON M D B, PARKER G J, et al. Complete photonic bandgaps in 12-fold symmetric quasicrystals[J]. Nature, 2000, 404(6779):740-743.

[2] MAN W N , MEGENS M, STEINHARDT P J, et al, Experimental measurement of the photonic properties of icosahedral quasicrystals[J]. Nature, 2005, 436:993-996.

[3] LIU Jian-jun, FAN Zhi-gang, HU Hai-li L, et al. Wavelength dependence of focusing properties of two-dimensional photonic quasicrystal flat lens[J]. Optics Letter, 2012.5, 37(10): 1730-1732.

[4] JIN Chong-jun, CHENG Bing-ying, MAN Bao-yan, et al. Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region[J]. Physical Review B, 2000, 61(16):10762-10767.

[5] HATTORI T, TSURUMACHI N, KAWATO S, et al. Photonic dispersion relation in a one-dimensional quasicrystal[J]. Physical Reviw B, 1994, 50(6): 4220-4223.

[6] KALITEEVSKI M A, BRAND S, ABRAM R A, et al. Two-dimensional Penrose-tiled photonic quasicrystals: from diffraction pattern to band structure[J]. Nanotechnology, 2000, 11(4): 274-280.

[7] MIKHAEL J, ROTH J, HELDEN L, et al. Archimedean-like tiling on decagonal quasicrystalline surfaces[J]. Nature, 2008, 454(7203): 501-504.

[8] MIKHAEL J, SCHMIEDEBERG M, RAUSCH S, et al. Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields[J]. Proceedings of the National Academy of Sciences, 2010, 107(9): 7214-7218.

[9] CAMPBELL M, SHARP D N , HARRISON M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404: 53-56.

[10] WANG Xia, XU Jian-feng , SU Hui-ming, et al. Three-dimensional photonic crystals fabricated by visible light holographic lithography[J]. Applied Physics Letters, 2003, 82(14): 2212-2214.

[11] JIN Wen-tao, XUE Yan-ling. Optical fabrication of two-dimensional photorefractive periodic photonic lattices and quasicrystal microstructures by multi-lens board[J]. Applied Physics B, 2015, 120(1):75-80.

[12] JIN Wen-tao, XUE Yan-ling, Optically induced three-dimensional Penrose-type photonic quasicrystal lattices in iron-doped lithium niobate crystal[J]. Optics Communications, 2014, 322:205-208.

[13] SUN Xiao-hong., TAO Xiao-ming., YE Ting-Jin., et al. Optical design and fabrication of 3D electrically switchable hexagonal photonic crystal[J]. Applied Physics B: Lasers and Optics, 2007, 87(1): 65-69.

[14] SUN Xiao-hong, TAO Xiao-ming, YE Ting-Jin, et al. 2D and 3D electrically switchable hexagonal photonic crystal in the ultraviolet range[J]. Applied Physics B: Lasers and Optics, 2007, 87(2):267-271.

[15] SUN Xiao-hong, TAO Xiao-ming, YE Ting-Jin, et al. Diffraction measurement and analysis of slanted writing holographic polymer dispersed liquid crystal[J]. Journal of Applied Physics, 2005, 98:0435101-0435105.

[16] SUN Xiao-hong., TAO Xiao-ming, WANG Yang-yong. Various photonic crystal structures fabricated by using a top-cut hexagonal prism[J]. Applied Physics A, 2010, 98(2): 255-261.

[17] SUN Xiao-hong, LIU WEI, WANG Gao-liang, et al. Optics design of a top-cut prism interferometer for holographic photonic quasi-crystals[J]. Optics Communications, 2012, 285(21-22):4593-4598.

[18] SUN Xiao-hong., WU Yu-long, LIU Wen, et al. Optical design and fabrication of ten-fold photonic quasicrystal structure[J]. AIP Advances, 2015, 5(5): 0571081-0571084.

孙晓红, 刘温彦, 王帅, 李文阳, 刘薇. 单棱镜共光路干涉法制作多结构二维光子准晶[J]. 光子学报, 2015, 44(12): 1216001. SUN Xiao-hong, LIU Wen-yan, WANG Shuai, LI Wen-yang, LIU Wei. Fabrication of Multi-structure 2D Photonic Quasicrystals by Using Single-prism Common-path Interferometry[J]. ACTA PHOTONICA SINICA, 2015, 44(12): 1216001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!