激光与光电子学进展, 2016, 53 (5): 050007, 网络出版: 2016-05-05   

高功率飞秒光纤激光系统的研究进展 下载: 1288次

Advances in High Power Femtosecond Fiber Laser Systems
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
系统综述了高功率飞秒光纤激光系统的最新研究进展,主要包括单路飞秒光纤啁啾脉冲放大系统、空间分束相干合成、分割脉冲放大相干合成、非线性压缩以及相干光谱合成等几个方面的内容,分析了各种技术手段的特点,指出基于主动相位控制的光纤激光相干偏振合成技术有望成为高功率飞秒光纤激光系统的重要发展方向。
Abstract
The new development of high power femtosecond fiber laser system is reviewed, including single femtosecond fiber chirped pulse amplification, spatially divided coherent beam combination, divided-pulse amplification coherent combination, nonlinear compression and spectral coherent beam combination, etc. The characteristics of these techniques are analyzed and it is pointed out that the coherent polarization beam combining technology based on active phase control is the most promising approach for developing high power femtosecond fiber laser system.
参考文献

[1] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874.

[2] Chu Y, Liang X, Yu L, et al.. High-contrast 2.0 petawatt Ti:sapphire laser system[J]. Opt Express, 2013, 21(24): 29231-29239.

[3] Brocklesby W S, Nilsson J, Schreiber T, et al.. ICAN as a new laser paradigm for high energy, high average power femtosecond pulses[J]. The European Physical Journal Special Topics, 2014, 223(6): 1189-1195.

[4] 薛宇豪, 周军, 雷思远, 等. 高平均功率超短脉冲激光光纤放大研究进展[J]. 激光与光电子学进展, 2008, 45(11): 28-34.

    Xue Yuhao, Zhou Jun, Lei Siyuan, et al.. The research development of fiber-based high average power ultrashort pulse amplification[J]. Laser & Optoelectronics Progress, 2008, 45(11): 28-34.

[5] 胡明列, 宋有建, 刘博文, 等. 光子晶体光纤飞秒激光技术研究进展及其前沿应用[J]. 中国激光, 2009, 36(7): 1660-1670.

    Hu Minglie, Song Youjian, Liu Bowen, et al.. Development and advanced applications of femtosecond photonic crystal fiber laser technique[J]. Chinese J Lasers, 2009, 36(7): 1660-1670.

[6] 李潮, 徐文成. 高功率飞秒脉冲光纤激光器的研究进展[J]. 激光与光电子学进展, 2008, 45(10): 17-23.

    Li Chao, Xu Wencheng. Research progress of high-power pulsed femtosecond fiber laser[J]. Laser & Optoelectronics Progress, 2008, 45(10): 17-23.

[7] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

[8] Wan P, Yang L, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Opt Express, 2013, 21(24): 29854-29859.

[9] Daniault L, Hanna M, Lombard L, et al.. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Opt Lett, 2011, 36(5): 621-623.

[10] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commun, 1985, 55(6): 447-449.

[11] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Opt Lett, 2007, 32(7): 871-873.

[12] Seise E, Klenke A, Limpert J, et al.. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Opt Express, 2010, 18(26): 27827-27835.

[13] Guichard F, Hanna M, Lombard L, et al.. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Opt Lett, 2013, 38(24): 5430-5433.

[14] Chang W, Zhou T, Siiman L A, et al.. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Opt Express, 2013, 21(3): 3897-3910.

[15] Huang S, Cirmi G, Moses J, et al.. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nature Photonics, 2011, 5(8): 475-479.

[16] Krauss G, Lohss S, Hanke T, et al.. Synthesis of a single cycle of light with compact erbium-doped fibre technology[J]. Nature Photonics, 2009, 4(1): 33-36.

[17] Shelton R K, Ma L, Kapteyn H C, et al.. Phase-coherent optical pulse synthesis from separate femtosecond lasers[J]. Science, 2001, 293(5533): 1286-1289.

[18] Mourou G, Brocklesby B, Tajima T, et al.. The future is fibre accelerators[J]. 2013, 7(4): 258-261.

[19] Eidam T, Hanf S, Seise E, et al.. Femtosecond fiber CPA system emitting 830 W average output power[J]. Opt Lett, 2010, 35(2): 94-96.

[20] Roser F, Eidam T, Rothhardt J, et al.. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Opt Lett, 2007, 32(24): 3495-3497.

[21] Limpert J, Clausnitzer T, Liem A, et al.. High-average-power femtosecond fiber chirped-pulse amplification system[J]. Opt Lett, 2003, 28(20): 1984-1986.

[22] Galvanauskas A, Fermann M E, Harter D, et al.. All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings[J]. Appl Phys Lett, 1995, 66(9): 1053-1055.

[23] Roser F, Schimpf D, Schmidt O, et al.. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system[J]. Opt Lett, 2007, 32(15): 2230-2232.

[24] Galvanauskas A, Cho G C, Hariharan A, et al.. Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems[J]. Opt Lett, 2001, 26(12): 935-937.

[25] Limpert J, Schreiber T, Nolte S, et al.. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber[J]. Opt Express, 2003, 11(24): 3332-3337.

[26] Yang K, Li W, Yan M, et al.. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers[J]. Opt Express, 2012, 20(12): 12899-12905.

[27] Peng X, Kim K, Mielke M, et al.. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation[J]. Opt Express, 2013, 21(21): 25440-25451.

[28] Wang X, Leng J, Zhou P, et al.. 1.8 kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Appl Phys B. 2012, 107(3): 785-790.

[29] Su R, Zhou P, Ma Y, et al.. 1.2 kW average power from coherently combined single-frequency nanosecond all-fiber amplifier array[J]. Appl Phys Express, 2013, 6(12): 122702.

[30] Yu C X, Augst S J, Redmond S M, et al.. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Opt Lett, 2011, 36(14): 2686-2688.

[31] Palese S, Cheung E, Goodno G, et al.. Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control[J]. Opt Express, 2012, 20(7): 7422-7435.

[32] Seise E, Klenke A, Breitkopf S, et al.. Coherently combined fiber laser system delivering 120 μJ femtosecond pulses[J]. Opt Lett, 2011, 36(4): 439-441.

[33] Seise E, Klenke A, Breitkopf S, et al.. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers[J]. Opt Lett, 2011, 36(19): 3858-3860.

[34] Klenke A, Seise E, Demmler S, et al.. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy[J]. Opt Express, 2011, 19(24): 24280-24285.

[35] Lozovoy V V, Pastirk I, Dantus M. Multiphoton intrapulse interference. IV. Ultrashort laserpulse spectral phase characterization and compensation[J]. Opt Lett, 2004, 29(7): 775-777.

[36] Siiman L A, Chang W, Zhou T, et al.. Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers[J]. Opt Express, 2012, 20(16): 18097-18116.

[37] Klenke A, Breitkopf S, Kienel M, et al.. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Opt Lett, 2013, 38(13): 2283-2285.

[38] Klenke A, Hoffmann A, Hadrich S, et al.. 2.1 mJ, 210 W femtosecond fiber CPA system[C]. SPIE, 2014, 8961: 89611D.

[39] Breitkopf S, Eidam T, von Grafenstein L, et al.. Approaching TW-peak powers at>10 kHz repetition rate by multi-dimensional coherent combining of femtosecond fiber lasers[C]. SPIE, 2014, 8961: 896106.

[40] Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Phys Today, 2009, 62(3): 44-49.

[41] Daniault L, Hanna M, Papadopoulos D N, et al.. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Opt Lett, 2011, 36(20): 4023-4025.

[42] Zaouter Y, Daniault L, Hanna M, et al.. Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers[J]. Opt Lett, 2012, 37(9): 1460-1462.

[43] Daniault L, Hanna M, Papadopoulos D N, et al.. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Opt Express, 2012, 20(19): 21627-21634.

[44] Zaouter Y, Guichard F, Daniault L, et al.. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Opt Lett, 2013, 38(2): 106-108.

[45] Kienel M, Eidam T, Klenke A, et al.. Analysis of energy-scaling capability of ultrashort pulses via passively combined divided-pulse amplification[C]// Advanced Solid State Lasers.OSA, 2013: 5.

[46] Kienel M, Klenke A, Eidam T, et al.. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Opt Express, 2013, 21(23): 29031-29034.

[47] Kienel M, Klenke A, Breitkopf S, et al.. Fiber amplifier CPA system using divided-pulse amplification for multi-mJ extraction[C]. IEEE Lasers and Electro-Optics Europe, 2013: 3.

[48] Lamb E S, Wright L G, Wise F W. Divided-pulse lasers[J]. Opt Lett, 2014, 39(9): 2775-2777.

[49] Komarov A, Amrani F, Dmitriev A, et al.. Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers[J]. International Journal of Optics, 2012, 2012: 1-13.

[50] Liu X. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser[J]. Phys Rev A, 2010, 81(2): 023811.

[51] Hadrich S, Klenke A, Hoffmann A, et al.. Nonlinear compression to sub-30 fs, 0.5 mJ pulses at 135 W of average power[J]. Opt Lett, 2013, 38(19): 3866-3869.

[52] Hadrich S, Klenke A, Hoffmann A, et al.. High-pulse energy and average-power ultrashort laser pulses via nonlinear compression of coherently combined fiber CPA system[C]. SPIE, 2014, 8961: 89611E.

[53] Klenke A, Kienel M, Eidam T, et al.. Divided-pulse nonlinear compression[J]. Opt Lett, 2013, 38(22): 4593-4596.

[54] Klenke A, Hadrich S, Kienel M, et al.. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Opt Lett, 2014, 39(12): 3520-3522.

[55] Krauss G, Lohss S, Hanke T, et al.. Synthesis of a single cycle of light with compact erbium-doped fibre technology[J]. Nature Photonics, 2009, 4(1), 33-36.

[56] 王小林, 周朴, 马浩统, 等. 基于相干相位-波分复用原理的脉冲激光技术[J]. 中国激光, 2009, 36(s1): 114-121.

    Wang Xiaolin, Zhou Pu, Ma Haotong, et al.. Pulse laser technology based on coherently phase-wavelength multiplexed principle[J]. Chinese J Lasers, 2009, 36(s1): 114-121.

于海龙, 王小林, 粟荣涛, 周朴, 陈金宝. 高功率飞秒光纤激光系统的研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050007. Yu Hailong, Wang Xiaolin, Su Rongtao, Zhou Pu, Chen Jinbao. Advances in High Power Femtosecond Fiber Laser Systems[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050007.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!