光学学报, 2021, 41 (1): 0116001, 网络出版: 2021-02-23   

基于透明陶瓷材料的激光研究进展 下载: 1275次特邀综述

Research Progress on Lasers Based on Transparent Ceramic Materials
作者单位
1 江苏师范大学江苏省先进激光技术与新兴产业协同创新中心, 江苏 徐州 221116
2 江苏师范大学江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
3 江苏中红外激光应用技术产业研究院, 江苏 徐州 221000
引用该论文

王飞, 彭跃峰, 唐定远, 沈德元. 基于透明陶瓷材料的激光研究进展[J]. 光学学报, 2021, 41(1): 0116001.

Fei Wang, Yuefeng Peng, Dingyuan Tang, Deyuan Shen. Research Progress on Lasers Based on Transparent Ceramic Materials[J]. Acta Optica Sinica, 2021, 41(1): 0116001.

参考文献

[1] Maiman T. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.

[2] Coble R L. Sintering alumina: effect of atmospheres[J]. Journal of the American Ceramic Society, 1962, 45(3): 123-127.

[3] Hatch S E, Parsons W F, Weagley R J. Hot-pressed polycrystalline CaF2∶Dy 2+ laser[J]. Applied Physics Letters, 1964, 5(8): 153-154.

[4] Yamamoto RM, Bhachu BS, Cutter KP, et al. The use of large transparent ceramics in a high powered, diode pumped solid state laser[C]//Advanced Solid-State Photonics, January 27-30, 2008, Nara, Japan. Washington, D.C.: OSA, 2008: WC5.

[5] Global Security. Joint high power solid-state laser (JHPSSL) [EB/OL]. [ 2020- 06- 15]. . http://www.globalsecurity.org/military/systems/ground/jhpssl.htm

[6] MandlA, Klimek DE. Textron's J-HPSSL 100 kW ThinZag© laser program[C]//Conference on Lasers and Electro-Optics 2010, May 16-21,2010, San Jose, California. Washington, D.C.: OSA, 2010: JThH2.

[7] Greskovich C, Chernoch J P. Polycrystalline ceramic lasers[J]. Journal of Applied Physics, 1973, 44(10): 4599-4606.

[8] Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040.

[9] Lu J R, Ueda K I, Yagi H, et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics: a new generation of solid state laser and optical materials[J]. Journal of Alloys and Compounds, 2002, 341(1/2): 220-225.

[10] Latham W P, Lobad A, Newell T C, et al. 6.5 kW, Yb∶YAG ceramic thin disk laser[J]. AIP Conference Proceedings, 2010, 1278(1): 758-764.

[11] Ikesue A, Aung Y L, Taira T, et al. Progress in ceramic lasers[J]. Annual Review of Materials Research, 2006, 36(1): 397-429.

[12] Tokurakawa M, Shirakawa A, Ueda K, et al. Diode-pumped ultrashort-pulse generation based on Yb 3+∶Sc2O3 and Yb 3+∶Y2O3 ceramic multi-gain-media oscillator[J]. Optics Express, 2009, 17(5): 3353-3361.

[13] Lim H H, Taira T. High peak power Nd∶YAG/Cr∶YAG ceramic microchip laser with unstable resonator[J]. Optics Express, 2019, 27(22): 31307-31315.

[14] Mason P. Divok M, Ertel K, et al. Kilowatt average power 100 J-level diode pumped solid state laser[J]. Optica, 2017, 4(4): 438.

[15] Albach D, Chanteloup J C. Large size crystalline vs co-sintered ceramic Yb 3+∶YAG disk performance in diode pumped amplifiers[J]. Optics Express, 2015, 23(1): 570.

[16] Gaumé R, Viana B, Vivien D, et al. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals[J]. Applied Physics Letters, 2003, 83(7): 1355-1357.

[17] Fornasiero L, Mix E, Peters V, et al. New oxide crystals for solid state lasers[J]. Crystal Research and Technology, 1999, 34(2): 255-260.

[18] Wang J, Zhao Y G, Yin D L, et al. Holmium doped yttria transparent ceramics for 2-μm solid state lasers[J]. Journal of the European Ceramic Society, 2018, 38(4): 1986-1989.

[19] Tokurakawa M, Takaichi K, Shirakawa A, et al. Diode-pumped mode-locked Yb 3+∶Lu2O3ceramic laser[J]. Optics Express, 2006, 14(26): 12832.

[20] Tokurakawa M, Shirakawa A, Ueda K, et al. Diode-pumped sub-100 fs Kerr-lens mode-locked Yb 3+∶Sc2O3 ceramic laser[J]. Optics Letters, 2007, 32(23): 3382-3384.

[21] Kitajima S, Shirakawa A, Yagi H, et al. Sub-100 fs pulse generation from a Kerr-lens mode-locked Yb∶Lu2O3 ceramic thin-disk laser[J]. Optics Letters, 2018, 43(21): 5451.

[22] Wang Y C, Jing W, Loiko P, et al. Sub-10 optical-cycle passively mode-locked Tm∶(L u2/3S c1/3)2O3 ceramic laser at 2 μm[J]. Optics Express, 2018, 26(8): 10299.

[23] Sanghera J, Frantz J, Kim W, et al. 10% Yb 3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 2011, 36(4): 576.

[24] KitajimaS, NakaoH, ShirakawaA, et al. CW performance and temperature observation of Yb∶Lu2O3 ceramic thin-disk laser[C]// Advanced Solid State Lasers 2017, October 1-5,2017,Nagoya, Aichi, Japan. Washington, D.C.: OSA, 2017: JM5A. 32.

[25] Wang H, Huang H T, Liu P, et al. Diode-pumped continuous-wave and Q-switched Tm∶Y2O3 ceramic laser around 2050 nm[J]. Optical Materials Express, 2017, 7(2): 296.

[26] Wang F, Tang J W, Li E H, et al. Ho 3+∶Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Optics Letters, 2019, 44(24): 5933.

[27] Li E H, Tang J W, Shen Y J, et al. High peak power acousto-optically Q-switched Ho∶Y2O3 ceramic laser at 2117 nm[J]. IEEE Photonics Technology Letters, 2020, 32(8): 492-495.

[28] Sanamyan T, Simmons J, Dubinskii M. Er 3+-doped Y2O3 ceramic laser at ~2.7 μm with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 2010, 7(3): 206-209.

[29] Sanamyan T, Kanskar M, Xiao Y, et al. High power diode-pumped 27-μm Er 3+∶Y2O3 laser with nearly quantum defect-limited efficiency[J]. Optics Express, 2011, 19(S5): A1082.

[30] Uehara H, Tokita S, Kawanaka J, et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26(3): 3497.

[31] Uehara H, Tokita S, Kawanaka J, et al. A passively Q-switched compact Er∶Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber[J]. Applied Physics Express, 2019, 12(2): 022002.

[32] Guan X F, Wang J W, Zhang Y Z, et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er∶Y2O3 ceramic lasers[J]. Photonics Research, 2018, 6(9): 830.

[33] Qin Z P, Xie G Q, Zhang J, et al. Continuous-wave and passively Q-switched Er∶Y2O3 ceramic laser at 2.7 μm[J]. International Journal of Optics, 2018, 3153614.

[34] Ren X J, Wang Y, Fan X L, et al. High-peak-power acousto-optically Q-switched Er∶Y2O3 ceramic laser at ~2.7 μm[J]. IEEE Photonics Journal, 2017, 9(4): 1-6.

[35] Wang L, Huang H, Shen D, et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 2.7 μm[J]. Optics Express, 2014, 22(16): 19495-19503.

[36] 李恩昊. 基于倍半氧化物基质的中红外波段陶瓷激光技术研究[D]. 上海: 复旦大学, 2020: 55- 58.

    Li EH. Research on sesquioxide-based ceramic lasers at mid-infrared band[D]. Shanghai: Fudan University, 2020: 55- 58.

[37] Ikesue A, Aung Y L. Synthesis and performance of advanced ceramic lasers[J]. Journal of the American Ceramic Society, 2006, 89(6): 1936-1944.

[38] Ikesue A, Aung Y L. Ceramic laser materials[J]. Nature Photonics, 2008, 2: 721-727.

[39] Sanghera J, Kim W, Villalobos G, et al. Ceramic laser material: past and present[J]. Optical Materials, 2013, 35(4): 693-699.

[40] Li M, Hu H, Gao Q S, et al. A 7.08-kW YAG/Nd∶YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 2017, 9(4): 1-10.

王飞, 彭跃峰, 唐定远, 沈德元. 基于透明陶瓷材料的激光研究进展[J]. 光学学报, 2021, 41(1): 0116001. Fei Wang, Yuefeng Peng, Dingyuan Tang, Deyuan Shen. Research Progress on Lasers Based on Transparent Ceramic Materials[J]. Acta Optica Sinica, 2021, 41(1): 0116001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!