红外与毫米波学报, 2014, 33 (4): 380, 网络出版: 2014-09-01   

旋转对称性对红外超材料完美吸收器特性的影响

Impact of resonator rotational symmetry on infrared metamaterial absorber
作者单位
1 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海200083
2 中国科学技术大学 国家同步辐射实验室,安徽 合肥230029
摘要
研究了超材料完美吸收器的旋转对称性对其吸收特性的影响.吸收器由金属颗粒/电介质/金属薄膜三层结构组成.以最上层是方形金属块为例,并通过在其y方向不同边沿处引入空气孔研究了四重、二重和非旋转对称吸收器的吸收特性.理论结果表明,当入射光偏振平行于x轴或y轴时,四重旋转对称结构有一个完全相同的吸收峰; 二重旋转对称结构吸收峰会在入射光偏振平行于x轴时劈裂成两个峰; 而无论入射光偏振平行于x轴或y轴,非旋转对称结构的吸收峰都会劈裂成两个峰.不同重数旋转对称性对吸收峰特性影响的结果将有助于设计新型的偏振无关的吸收器.
Abstract
The impact of rotational symmetry of the metamaterial perfect absorber on its performance was investigated. The absorber consists of a metal particle/dielectric-spacer/metal film structure. Using a square metal particle as an example structure and by introducing small air holes to the different y-direction sides of it, we study the absorption properties of the fourfold, twofold and non-rotational rotational symmetrical absorber. The calculated results show that when the polarization of the incident light parallels to x axis or y axis, the same single absorption peak appears in the absorption spectrum. The absorption peak of the twofold rotational symmetrical structure splits into two peaks when the polarization of the incident light parallels to x axis. The absorption peak splits into two peaks no matter the polarization of the incident light parallels to x axis or y axis in the case of non-rotational symmetry. The results of the absorption peak properties with different rotational symmetry may be helpful to design novel polarization-insensitive absorbers.
参考文献

[1] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Phys. Rev. Lett. 2008,100: 20740-2.

[2] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. [J]. Nat Commun. 2011, 2: 517.

[3] Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Phys. Rev. Lett. 2010, 104: 207-403.

[4] Wu C H, III Neuner B, Shvets G. Large-area wide-angle spectrally selective plasmonic absorber[J]. Phys. Rev. B. 2011, 84: 075102.

[5] Cui Y X, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J], Nano Lett. 2012, 12 (3): 1443-1447.

[6] Wu C, Shvets G. Design of metamaterial surfaces with broadband absorbance[J], Opt Lett. 2012 37(3): 308-310.

[7] Wang J, Chen X S, Li Z F, et al. Study of grating performance for quantum well photodetectors[J]. J. Opt. Soc. Am. B. 2010, 27(11): 2428-2432.

[8] Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Phys. Rev. Lett. 2010, 104: 20740-3.

[9] Diem M, Koschny T, Soukoulis C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime[J]Phys. Rev. B. 2009, 79: 033101.

[10] Wang Y, Sun T, Paudel T, et al. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells[J]. Nano. Lett. 2012, 12: 440445.

[11] Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication,and characterization[J]. Appl. Phys. Lett. 2009, 95: 241111.

[12] Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Appl. Phys. Lett. 2012, 100: 103506.

[13] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J], Nano Lett, 2010,10: 2342-2348.

[14] Lin C H, Chern R L, Lin H Y. Polarization-independent broad-band nearly perfect absorbers in the visible regime[J]. Opt Express, 2011, 19(2): 415-424.

[15] Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J], J. Opt. Soc. Am. B. 2010, 3(27): 498-504.

[16] Cheng C W, Abbas M N, Chiu C W, et al. Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays[J]. Opt. Express, 2012, 20(9): 10376-10381.

[17] Zhang B Y, Hendrickson J, Guo J P. Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures[J]. J. Opt. Soc. Am. B. 30(3): 656-662.

[18] Bouchon P, Koechlin C, Pardo F, et al. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas[J]. Opt Lett. 2012, 37(6): 10381040.

[19] Shen X P, Cui T J, Zhao J M, et al. Polarization-independent wide- angle triple-band metamaterial absorber[J]. Opt. Express. 2011, 19(10): 9401-9407.

[20] Chen S Q, Cheng H, Yang H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Appl. Phys. Lett. 2011, 99: 253104.

[21] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Appl. Opt. 1983, 22: 10991119.

[22] EastFDTD v3.0, DONGJUN Science and Technology Co. China.

倪波, 陈效双, 张杨, 黄陆军, 丁佳轶, 李冠海, 陆卫. 旋转对称性对红外超材料完美吸收器特性的影响[J]. 红外与毫米波学报, 2014, 33(4): 380. NI Bo, CHEN Xiao-Shuang, ZHANG Yang, HUANG Lu-Jun, DING Jia-Yi, LI Guan-Hai, LU Wei. Impact of resonator rotational symmetry on infrared metamaterial absorber[J]. Journal of Infrared and Millimeter Waves, 2014, 33(4): 380.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!