红外与激光工程, 2018, 47 (12): 1217003, 网络出版: 2019-01-10   

三轴光电跟踪系统空间目标捕获方法设计

Design of space target acquisition method for three-axis photoelectric tracking system
陈德毅 1,2,3,*柳万胜 1,2贺东 1,2,3陈俊 4史一翔 1,2,3
作者单位
1 中国科学院光束控制重点实验室, 四川 成都 610209
2 中国科学院光电技术研究所, 四川 成都 610209
3 中国科学院大学, 北京100049
4 成都理工大学 旅游与城乡规划学院, 四川 成都 610059
摘要
针对三轴光电跟踪系统对空间目标捕获方案的设计问题, 首先分析了影响三轴光电跟踪系统捕获空间目标存在的误差源并对主要误差进行了误差估计, 即轨道预报误差和三轴指向误差。接着建立了主要误差到不确定区域(Field of uncertain, FOU)的误差传递关系, 利用所建的传递关系计算出了不确定区域, 并根据不确定区域的大小、形状以及分布类型设计搜索扫描方式。以不确定区域形状为椭圆且服从二维正态分布为例, 设计的搜索扫描方式为分行螺旋扫描。最后对该扫描捕获方法进行了数值仿真, 验证了该方法的正确性。经过仿真计算, 在捕获概率为98%的情况下, 目标的平均捕获时间为10.52 s。该方法为三轴光电跟踪系统捕获空间目标提供了一定的理论基础。
Abstract
Aiming at the design problem of the three-axis photoelectric tracking system for space target acquisition, firstly, the error source that affected the three-axis photoelectric tracking system to capture the space target was analyzed, and the main error was estimated, that was, track prediction error and three-axis pointing error. Then the error propagation relationship from the main error to the field of uncertain (FOU) was established, the uncertain area was calculated by using the transfer relation, and the search scanning mode was designed according to the size, shape and distribution type of the uncertain area. Taking an example of the shape of the field of uncertain as an ellipse and obeying the two-dimensional normal distribution, the design of the search mode was the branch spiral scan. Finally, the numerical simulation was also carried out to verify the correctness of the mode. By simulation calculation, the average acquisition time of the target was 10.52 s in the case of the capture probability of 98%. This mode provides a theoretical basis for the acquisition of space targets by three-axis photoelectric tracking system.
参考文献

[1] 刘小强, 任高辉, 邢军智, 等. 交互式多模型算法在光电跟踪控制系统中应用的仿真[J]. 红外与激光工程, 2016, 45(9): 0917003.

    Liu Xiaoqiang, Ren Gaohui, Xing Junzhi, et al. Simulation of application of IMM in photoelectric tracking control system[J]. Infrared and Laser Engineering, 2016, 45 (9): 0917003. (in Chinese)

[2] 杨宏韬. 基于多信息源数据融合的光电跟踪系统精度提高方法的研究[D]. 北京: 中国科学院大学, 2016.

    Yang Hongtao. Research on the method of improving accuracy of photoelectric tracking system based on multi-source data fusion [D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese)

[3] 官伯林. 三轴光电跟踪系统跟踪策略和控制研究[D]. 西安: 西安电子科技大学, 2012.

    Guan Bolin. Tracking strategy and control method of three-axis photoelectric tracking systems[D]. Xi′an: Xidian University, 2012. (in Chinese)

[4] 马佳光. 捕获跟踪与瞄准系统的基本技术问题[J]. 光电工程, 1989(3): 1-42.

    Ma Jiaguang. The basic technologies of the acquisition tracking and pointing systems[J]. Opto-Electronic Engineering, 1989(3): 1-42. (in Chinese)

[5] 张海波, 马勇辉, 季东, 等. 一种提高光电跟踪设备捕获概率的搜索方法[J]. 红外与激光工程, 2016, 45(2): 0217003.

    Zhang Haibo, Ma Yonghui, Ji Dong, et al. Search method to improve acquisition probability for optoelectronic tracking device [J]. Infrared and Laser Engineering, 2016, 45(2): 0217003. (in Chinese)

[6] 周彦平,付森,于思源, 等. 天基非合作目标探测中的捕获概率模型[J]. 红外与激光工程, 2010, 39(4): 639-643.

    Zhou Yanping, Fu Sen, Yu Siyuan, et al. Acquisition-probability model of noncooperative maneuvering target detection in space [J]. Infrared and Laser Engineering, 2010, 39(4): 639-643. (in Chinese)

[7] Sun J, Liu L, Lu W, et al. Acquisition strategy for the satellite laser communications under the laser terminal scanning errors situation[C]//Free-Space and Atmospheric Laser Communications XI, 2011: 461-465.

[8] 陈诚. 三轴天线座阻尼最小二乘跟踪策略研究[J]. 现代雷达, 2015, 37(7): 44-47.

    Chen Cheng. A study on damped least-squares tracking strategy for three-axis antenna pedestal[J]. Modern Radar, 2015, 37 (7): 44-47. (in Chinese)

[9] 张大兴, 贾建援, 张爱梅, 等. 基于粒子群算法的三轴跟瞄装置跟踪策略研究[J]. 仪器仪表学报, 2009, 30(9): 1841-1845.

    Zhang Daxing, Jia Jianyuan, Zhang Aimei, et al. Investigation on tracking strategy of three-axis tacking equipment based on particle swarm optimization[J]. Chinese Journal of Scientific Instrument, 2009, 30(9): 1841-1845. (in Chinese)

[10] 刘兴法. 高仰角目标光电跟踪技术研究[D]. 成都: 中国科学院光电技术研究所, 2006.

    Liu Xingfa. Study on photoelectric tracking technology for high-elevation object[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2006. (in Chinese)

[11] 白帅. 空间二维光电转台的高稳定捕获跟踪技术研究[D]. 北京: 中国科学院大学, 2015.

    Bai Shuai. Research on highly stable acquisition and tracking technologies of space two-axis optoelectronic gimbals[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)

[12] 陈磊, 韩蕾, 白显宗, 等. 空间目标轨道力学与误差分析[M]. 北京: 国防工业出版社, 2010.

    Chen Lei, Han Lei, Bai Xianzong, et al. Orbital Dynamics and Error Analysis of Space Object[M]. Beijing: National Defense Industry Press, 2010. (in Chinese)

[13] 朱博韬. 卫星光通信双向扫描捕获技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    Zhu Botao. Study of bidirectional acquisition technology in intersatellite optical communication[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)

[14] 张玉碟, 柳万胜, 罗一涵, 等. 一种三轴光电跟踪系统指向误差修正的方法[J]. 光电工程, 2014, 41(6): 51-55, 74.

    Zhang Yudie, Liu Wansheng, Luo Yihan, et al. Pointing error modification method for three-axis optoelectronic tracking system [J]. Opto-Electronic Engineering, 2014, 41(6): 51-55, 74. (in Chinese)

[15] 吴铁柱, 陈学军, 王青松, 等. 不确定区域天线扫描目标捕获方法[J]. 电讯技术, 2016, 56(11): 1223-1228.

    Wu Tiezhu, Chen Xuejun, Wang Qingsong, et al. Target capturing by antenna scanning in uncertain areas[J]. Telecommunication Engineering, 2016, 56(11): 1223-1228. (in Chinese)

陈德毅, 柳万胜, 贺东, 陈俊, 史一翔. 三轴光电跟踪系统空间目标捕获方法设计[J]. 红外与激光工程, 2018, 47(12): 1217003. Chen Deyi, Liu Wansheng, He Dong, Chen Jun, Shi Yixiang. Design of space target acquisition method for three-axis photoelectric tracking system[J]. Infrared and Laser Engineering, 2018, 47(12): 1217003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!