激光与光电子学进展, 2007, 44 (12): 14, 网络出版: 2007-12-15  

功能玻璃材料研究向何处去 下载: 604次

Functional Glasses: Where To Go
作者单位
浙江大学材料系,杭州 310027
摘要
分析了玻璃的发展历史和研究现状,指出其未来发展趋势:低维化、复合化以及集成化。提出了玻璃微结构的形成机制和调控规律以及玻璃微结构对外场的响应机制和功能化原理是实现具有高新功能玻璃材料与器件必须解决的两个关键科学问题。简要介绍了在飞秒激光诱导玻璃功能微结构以及实现超宽带光放大新型玻璃方面的探索性工作。
Abstract
Research history and recent research development status of glasses are reviewed. It is pointed out that glasses with low-dimensional, hybrid and integrated structures will be the future development tendencies of glasses. It is necessary to solve two key scientific problems: formation mechanisms and controlling rules of glass microstructure, and response mechanism to external field and functionalization principle of glass microstructure for the realization of novel glasses with high performance. Our recent research development on the femtosecond laser induced functional microstructures and novel glasses for superbroad band optical amplification is also briefly introduced.
参考文献

[1] . M. Spillane, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity[J]. Nature, 2002, 415(6872): 621-623.

[2] . Temelkuran, S. D. Hart, G. Benoit et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps[J]. Nature, 2002, 420(6916): 650-653.

[3] . D. Hart, G. R. Maskaly, B. Temelkuran et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1540.

[4] F. Gan, L. Xu, Photonic Glasses[M]. World Scientific Press, 2006

[5] . Qiu, K. Miura, T. Suzuki et al.. Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glasses by an infrared femtosecond pulsed laser[J]. Appl. Phys. Lett., 1999, 74(1): 10-12.

[6] . Qiu, K. Kojima, K. Miura et al.. Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass[J]. Opt. Lett., 1999, 24(11): 786-788.

[7] . Miura, J. Qiu, T. Mitsuyu et al.. Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses[J]. Opt. Lett., 2000, 25(6): 408-410.

[8] . Dai, B. Zhu, J. Qiu et al.. Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser[J]. Appl. Phys. Lett., 2007, 90(18): 181109.

[9] Y. Kondo J. Qiu, T. Mitsuyu et al.. Three-dimensional microdrilling by multiphoton process and chemical etching[J]. Jpn. J. Appl. Phys., 1999, 38(10A):1146~1148

[10] . Kazansky, H. Inouye, T. Mitsuyu et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Phys. Rev. Lett., 1999, 82(10): 2199-2202.

[11] . Qiu, P. Kazansky, J. Si et al.. Memorized polarization dependent light scattering in rare-earth-ion-doped glass[J]. Appl. Phys. Lett., 2000, 77(13): 1940-1942.

[12] . Qiu, J. Si, K. Hirao. Photoinduced stable second hamonic generation in chalcogenide glasses[J]. Opt. Lett., 2001, 26(12): 914-916.

[13] . Qiu, M. Shirai, T. Nakaya et al.. Space-selective precipitation of silver nanoparticles inside glasses[J]. Appl. Phys. Lett., 2002, 81(17): 3040-3042.

[14] . Qiu, X. Jiang, C. Zhu et al. Manipulation of gold nanoparticles inside transparent materials[J]. Angew. Chem. Int. Ed., 2004, 43: 2234.

[15] . Himei, J. Qiu, S. Nakajima et al.. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser[J]. Opt. Lett., 2004, 29(23): 2728-2730.

[16] . Shimotsuma, P. Kazansky, J. Qiu et al.. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Phys. Rev. Lett., 2003, 91(24): 247405.

[17] . Kanehira, J. Si, J. Qiu et al.. Periodic nanovoid structures via femtosecond laser irradiation[J]. Nano. Lett., 2005, 5(8): 1591-1595.

[18] Y. Fujimoto, M. Nakatsuka. Infrared luminescence from bismuth-doped silica glass[J]. Jpn. J. Appl. Phys., 2001, 40(3B): 279~281

[19] . Fujimoto, M. Nakatsuka. Optical amplification in bismuth-doped silica glass[J]. Appl. Phys. Lett., 2003, 82(19): 3325-3326.

[20] . Peng, J. Qiu, D. Chen et al.. Bismuth and aluminum-codoped germanium oxide glasses for super-broadband optical amplification[J]. Opt. Lett., 2004, 29(17): 1998-2000.

[21] . Meng, J. Qiu, M. Peng et al.. Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses[J]. Opt. Exp., 2005, 13(5): 1635-1642.

[22] . Meng, J. Qiu, M. Peng et al.. Near infrared broadband emission of bismuth-doped aluminophosphate glass[J]. Opt. Exp, 2005, 13(5): 1628-1634.

[23] . Peng , X. Meng, D. Chen et al.. Comment on“Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses, Appl. Phys. Lett. 2003, 82, 4035 ”[J]. Appl. Phys. Lett., 2005, 87: 66103.

[24] . Peng, J. Qiu, D. Chen et al.. Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3[J]. Opt. Exp., 2005, 13(18): 6892.

[25] . Peng, J. Qiu, D. Chen et al.. Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses[J]. Opt. Lett., 2005, 30(18): 2433-2435.

[26] . Zhou, H. Dong, H. Zeng et al.. Broadband optical amplification in Bi-doped germanium silicate glass[J]. Appl. Phys. Lett., 2007, 91: 61919.

[27] E. Dianov, V. Dvoyrin, V. Mashinsky et al.. CW bismuth fibre laser[J]. Quantum Electronics 2005, 35(12):1083~1084

[28] . Dvoyrin, V. Mashinsky, E. Dianov. Yb-Bi pulsed fiber lasers[J]. Opt. Lett., 2007, 32(5): 451-453.

[29] . Suzuki, Y. Ohishi. Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass[J]. Appl. Phys. Lett., 2006, 88: 191912.

[30] . Razdobreev, L. Bigot, V. Pureur et al.. Efficient all-fiber bismuth-doped laser[J]. Appl. Phys. Lett., 2007, 90: 031103.

[31] . Zhou, G. Feng, B. Wu et al.. Intense infrared luminescence in transparent glass-ceramics containing beta-Ga2O3 : Ni2+ nanocrystals[J]. J. Phys. Chem. C, 2007, 111: 7335.

[32] . Zhou, H. Dong, G. Feng et al.. Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3 : Ni2+ nanocrystals[J]. Opt. Exp., 2007, 15(9): 5477-5481.

[33] . Zhou, H. Dong, H. Zeng et al.. Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics[J]. J. Appl. Phys., 2007, 102: 63106.

[34] B. Wu, S. Zhou, J. Ruan et al.. Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals[J]. Appl. Phys. Lett., in press.

[35] . W. Anderson. Through the glass lightly[J]. Science, 1995, 267(5204): 1616-1617.

邱建荣. 功能玻璃材料研究向何处去[J]. 激光与光电子学进展, 2007, 44(12): 14. 邱建荣. Functional Glasses: Where To Go[J]. Laser & Optoelectronics Progress, 2007, 44(12): 14.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!