光学 精密工程, 2017, 25 (8): 2204, 网络出版: 2017-10-16   

CCD数字像元的合并方法及其应用

Digital binning method for CCD pixels and its applications
作者单位
1 中国科学院 安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
星载差分吸收光谱仪中的科学级帧转移型电荷耦合器件(CCD)通常使用四行像元合并(4-Binning)方法提升载荷的信噪比,但该方法仅能工作在目标光强较弱的环境。为使载荷适应目标光线较强的环境,设计了数字像元合并方法(4-AVR)来提升载荷的探测能力。考虑相对常规的4-Binning方法,4-AVR方法会产生CCD信号衰减现象,故对这一现象进行了理论分析,得到由于CCD读出速率导致的信号衰减系数为0.699。在实验室搭建了测试装置,验证了上述结果,结果表明,4-AVR方法下获取的CCD像素值相对于4-Binning方法获取的像素值的衰减系数为0.698,从而证实了理论分析的正确性。实验显示,使用这一系数可完成对4-AVR方式下获取的像素值的校正,从而实现两种方法的无差别化。将校正方法作为载荷一级数据处理的一部分,进行了大气痕量气体的反演测试。结果表明数字像元合并方法可保证大气痕量气体的反演精度,进一步验证了数字像元合并方法的可靠性。
Abstract
Scientific grade frame-transfer Charged Coupled Devices(CCDs) in a space-borne differential optical absorption spectrometer usually use a Pixel Binning (4-Binning)method to improve its Signal-to-Noise Ratios(SNRs). It is only suitable for the quite weak radiation. Toallow the spectrometer to be used for stronger radiation and to expand itsdetection ability, a digital pixel binning method, 4-AVR, was designed. Comparing to the 4-Binning method, this 4-AVR method brings the attenuation of CCD signals. Therefore, the attenuationwas researched theoretically, and a signal attenuationcoefficient0.699 due to the CCD signal readout speed was obtained. Then, testing devices werebuilt in the lab to get the data of pixel values of CCD in both 4-Binning and 4-AVR methods. The result shows that the attenuation coefficient of CCD pixel values is 0.698, which verifies the theoretical result. The experiment demonstrates that the coefficient can be used to correct the pixel values gained in the4-AVR method to implement the consistency of two methods. By taking the correction as a part of 1-B data processing, the tests of atmospheric trace gases were retrieved, and results indicate that the method ensures the quantitatively data of the space-borne spectrometer, which verifies the reliability of the method.
参考文献

[1] 赵敏杰, 司福祺, 江宇, 等. 星载大气痕量气体差分吸收光谱仪的实验室定标[J]. 光学 精密工程, 2013, 21(3): 567-574.

    ZHAO M J, SI F Q, JIANG Y, et al.. In-lab Calibration of space-borne differential optical absorption spectrometer[J]. Opt. Precision Eng., 2013, 21(3): 567-574. (in Chinese)

[2] 周海金, 刘文清, 司福祺, 等. 星载大气痕量气体差分吸收光谱仪光谱定标技术研究[J]. 光谱学与光谱分析, 2012, 32(11): 2881-2885.

    ZHOU H J, LIU W Q, SI F Q, et al.. Spectral Calibration for space-borne differential optical absorption spectrometer[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 2881-2885. (in Chinese)

[3] 赵敏杰, 邹莹, 司福祺, 等. 星载痕量气体差分吸收光谱仪非均匀性校正研究[J]. 光谱学与光谱分析, 2015, 35(9): 2578-2582.

    ZHAO M J, ZOU Y, SI F Q, et al.. Study on the non-uniformity calibration of space-born differential optical absorption spectrometer[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2578-2582. (in Chinese)

[4] 朱时良, 梁金星. 宽带多光谱成像系统CCD响应的线性化校正方法[J]. 包装学报, 2016, 8(1): 68-73.

    ZHU SH L, LIANG J X. Linear correction method of CCD response for wide-band multi-spectral imaging systems[J]. Packaging Journal, 2016, 8(1): 68-73. (in Chinese)

[5] LEVELT P F, NOORDHOEK R. OMI algorithm theoretical basis document volume I: OMI instrument, level 0-1b processor, calibration & operations[R]. Tech. Rep. ATBD-OMI-01, Version 1.1. 2002.

[6] 周前飞, 刘晶红, 居波, 等. 面阵CCD航空相机斜视图像的几何校正[J]. 液晶与显示, 2015, 30(3): 505-513.

    ZHOU Q F, LIU J H, JU B, et al.. Geometric correction of oblique images for array CCD aerial cameras[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(3): 505-513. (in Chinese)

[7] 王征, 何云丰, 曹小涛, 等. 基于FPGA的大面阵CMOS相机高速率电子学系统设计[J]. 液晶与显示, 2016, 31(2): 173-178.

    WANG ZH, HE Y F, CAO X T, et al.. Design of large area array CMOS of high speed electronics camera system based on FPGA[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(2): 173-178. (in Chinese)

[8] LI H, ZHANG H, GUO X L, et al.. Image restoration after pixel binning in image sensors[J]. Tsinghua Science & Technology, 2009, 14(4): 541-545.

[9] 韦晓茹, 蔡志坚, 居戬之. CCD的Binning技术在光信号测量中的应用研究[J]. 光学仪器, 2013, 35(2): 11-14.

    WEI X R, CAI ZH J, JU J Z. Research on Binning technique in light measuring[J]. Optical Instruments, 2013, 35(2):11-14. (in Chinese)

[10] 王煜, 陆亦怀, 赵欣, 等. 星载差分吸收光谱仪CCD成像电路的设计及实施[J]. 激光与红外, 2015, 45(6): 663-668.

    WANG Y, LU Y H, ZHAO X, et al.. Design and implementation of CCD imaging circuit for satellite-borne DOAS spectrometer[J]. Laser & Infrared, 2015, 45(6):663-668. (in Chinese)

[11] 郭伟强, 万志, 常磊, 等. 面阵CCD信号采集系统的噪声抑制[J]. 发光学报, 2008, 29(1): 204-208.

    GUO W Q, WAN ZH, CHANG L, et al.. Noise suppression of area array CCD Signal acquisition[J]. Chinese Journal of Luminescence, 2008, 29(1): 204-208. (in Chinese)

[12] CHANG Z, WANG Y, ZHAO X, et al.. LVDS-USB-adapter applied to spectrometers[C]. Solid-State and Organic Lighting 2014. Optical Society of America, 2014:JW6A.9.

[13] 王洪超, 刘红元, 王恒飞, 等. CCD系统增益标定及不确定度评定[J]. 光学学报, 2015, 35(S1): s112004.

    WANG H CH, LIU H Y, WANG H F, et al.. System gain calibration of CCD and evaluation of uncertainty[J]. Acta Optica Sinica, 2015, 35(S1): s112004. (in Chinese)

[14] PLATT U, STUTZ J. 2008. Differential Optical Absorption Spectroscopy: Principles and Applications[M]. Berlin Heidelberg: Springer, 314-330.

[15] WAGNER T, CHANCE K, FRIEβ U, et al.. Correction of the ring effect and I0-effect for DOAS observations of scattered sunlight[C]. Proceedings of the 1st DOAS Workshop, 2001: 1-13.

常振, 王煜, 司福祺, 周海金, 赵敏杰, 刘文清. CCD数字像元的合并方法及其应用[J]. 光学 精密工程, 2017, 25(8): 2204. CHANG Zhen, WANG Yu, SI Fu-qi, ZHOU Hai-jin, ZHAO Min-jie, LIU Wen-qing. Digital binning method for CCD pixels and its applications[J]. Optics and Precision Engineering, 2017, 25(8): 2204.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!