光子学报, 2019, 48 (6): 0614001, 网络出版: 2019-07-10   

掺钕晶体双频微片激光器的频差温度特性研究

Temperature Characteristics of Frequency Separation in Nd-doped Dual-frequency Microchip Laser
作者单位
1 杭州电子科技大学 通信工程学院, 杭州 310018
2 国民核生化灾害防护国家重点实验室, 北京 102205
3 防化研究院, 北京 102205
摘要
对不同参数的掺钕晶体双频微片激光器(DFML)进行频差温度特性研究.探索了在不同腔长、不同种类掺钕介质的DFML中, 晶体温控温度对双频信号频差的影响.结果表明, 双频信号频差与谐振腔光学腔长成反比, 与晶体温控温度呈正相关; 其中0.5 mm腔长DFML(Nd∶YVO4)的双频信号频差随晶体温控温度的变化率为0.34 GHz/℃, 0.8 mm腔长DFML(Nd∶YVO4)的双频信号频差随晶体温控温度的变化率为0.12 GHz/℃, 1 mm腔长DFML(Nd∶YVO4)的双频信号频差随晶体温控温度的变化率为0.044 GHz/℃; 即腔长越短, 晶体温控温度对频差的影响越大.不同材料Nd∶YVO4和Nd∶GdVO4晶体1 mm腔长的DFML双频信号频差随晶体温度的变化率相近,仿真与实验结果符合较好.
Abstract
The frequency separation temperature characteristics of Nd-doped Dual-frequency Microchip Lasers (DFMLs) were studied. The frequency separation versus the crystal temperature of DFML with different cavity lengths and different kinds of gain medium are experimented. The experimental results show that, the frequency separation is inversely proportional to the cavity length, and positively related to the crystal temperature. The frequency separation change rates with crystal temperatures of 0.5 mm, 0.8 mm and 1 mm DFML (Nd∶YVO4) are 0.34 GHz/℃, 0.12 GHz/℃ and 0.04 GHz/℃, the shorter the cavity length is, the greater frequency separation change with the crystal temperature is. The frequency separation change rate with crystal temperature of 1 mm DFML (Nd∶YVO4) and (Nd∶GdVO4) is nearly same, the simulation agrees with the experimental results well.
参考文献

[1] LI G, ZHAO S, YANG K, et al. Diode-pumped passively Q-switched Nd∶YVO4 laser with GaAs saturable absorber[J]. Chinese Optics Letters, 2004, 2(8): 462-465.

[2] NODOP D, LIMPERT J, HOHMUTH R, et al. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime[J]. Optics Letters, 2007, 32(15): 2115-2117.

[3] GARNOV S, SOLOKHIN S, OBRAZTSOVA E, et al. Passive mode-locking with carbon nanotube saturable absorber in Nd∶GdVO4 and Nd∶Y0.9Gd0.1VO4 lasers operating at 1.34 μm[J]. Laser Physics Letters, 2010, 4(9): 648-651.

[4] 陈家璧, 彭润玲. 激光原理及应用(第2版)[M]. 北京: 电子工业出版社, 2008.

[5] WANG C, CHOW Y, REEKIE L, et al. A comparative study of the laser performance of diode-laser-pumped Nd∶GdVO4 and Nd∶YVO4 crystals[J]. Applied Physics B, 2000, 70(6): 769-772.

[6] DANION G, HAMEL C, FREIN L, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optics Express, 2014, 22(15): 17673-17678.

[7] ROLLAND A, FREIN L, VALLET M, et al. 40-GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1738-1740.

[8] PILLET G, MORVAN L, MENAGER L, et al. Dual-frequency laser phase locked at 100 GHz[J]. Journal of Lightwave Technology, 2014, 32(20): 3824-3830.

[9] WANG S, GAO Z, LI G, et al. Continual mechanical vibration trajectory tracking based on electro-optical heterodyne interferometry[J]. Optics Express, 2014, 22(7): 7799-7810.

[10] TONDA S, DOLFI D, MONSTERLEET A, et al. Optical signal processing in Radar systems[J]. IEEE Transactions on Microwave Theory & Techniques, 2006, 54(2): 847-853.

[11] CHEN J, ZHU H, XIA W, et al. Self-mixing birefringent dual-frequency laser Doppler velocimeter[J]. Optics Express, 2017, 25(2): 560-572.

[12] JIAO M, LIU Y, XING J. Design of diode-pumped dual-frequency Nd∶YAG green laser with large frequency difference for absolute-distance interferometry[J]. Journal of Physics, 2007, 48(6): 1482-1487.

[13] CHO C, HUANG T, WEN S, et al. Nd∶YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm[J]. Optics Express, 2014, 22(21): 25318-25323.

[14]

    WU B, JIANG P, YANG D, et al. Compact dual-wavelength Nd∶GdVO4 laser working at 1063 and 1065 nm[J]. Optics Express, 2009, 17(8): 6004-6009.

[15] 戴荣, 胡淼, 蔡美伶, 等. Nd∶YVO4双频微片激光器的热致频差调谐实验研究[J]. 中国激光, 2017,44(1): 0101003.

    DAI Rong, HU Miao, CAI Mei-ling, et al. Experimental study of thermally induced frequency difference tuning of Nd∶YVO4 microchip dual frequency laser [J]. Chinese Journal of Lasers, 2017,44(1): 0101003.

[16] 蔡美伶, 胡淼, 戴荣, 等. Nd∶GdVO4和Nd∶YVO4晶体发射截面谱及微片激光器光谱的实验研究[J]. 中国激光, 2017,44(11): 1101004.

    CAI Mei-ling, HU Miao, DAI Rong, et al. Experimental study of emission cross section spectra and microchip laser spectra of Nd∶GdVO4 and Nd∶YVO4 crystals[J]. Chinese Journal of Lasers, 2017,44(11): 1101004.

[17] FORGET S, CHENAIS S. Organic lasers resonators[M]. Heidelberg: Springer-Verlag, 2013.

[18] 胡淼, 张瑜, 蔡炬, 等. 微片激光器阈值附近的输出光谱特性研究[J]. 光电子·激光, 2016,27(10): 1036-1041.

    HU Miao, ZHANG Yu, CAI Ju, et al. Investigation of power equalization in a dual-frequency Nd∶YVO4 microchip laser[J]. Journal of Optoelectronics·Laser, 2016,27(10): 1036-1041.

[19] 胡淼, 张瑜, 巩续仁, 等. 双频Nd∶YVO4微片激光器功率均衡研究[J]. 光电子·激光, 2016,27(2): 145-149.

    HU Miao, ZHANG Yu, GONG Xu-ren, et al. Investigation of power equalization in a dual-frequency Nd∶YVO4 microchip laser[J]. Journal of Optoelectronics·Laser, 2016,27(2): 145-149.

邹宇玲, 胡淼, 李鹏, 欧军, 周雪芳, 杨国伟, 卢旸, 毕美华. 掺钕晶体双频微片激光器的频差温度特性研究[J]. 光子学报, 2019, 48(6): 0614001. ZOU Yu-ling, HU Miao, LI Peng, OU Jun, ZHOU Xue-fang, YANG Guo-wei, LU Yang, BI Mei-hua. Temperature Characteristics of Frequency Separation in Nd-doped Dual-frequency Microchip Laser[J]. ACTA PHOTONICA SINICA, 2019, 48(6): 0614001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!