红外与激光工程, 2018, 47 (12): 1218007, 网络出版: 2019-01-10   

精准农业观测高数值孔径短波红外成像光谱仪光学系统

Optical system of imaging spectrometer in short-wave infrared with high NA for precision agriculture observation
作者单位
中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
摘要
研究了一种在1.0~2.5 μm短波红外波段上可用于机载精准农业观测的成像光谱仪光学系统。研究分析了用于精准农业探测所需的成像光谱仪科学性能参数, 着重改进了Dyson成像光谱仪系统并获得了完善的消像散条件, 使得其各组成部分在沿光轴方向和垂直光轴方向均具备足够的空间, 确保了狭缝、探测器和光学镜片的光机结构放置。设计成像光谱仪具备良好光学性能, 光学系统F数为1.5, 视场28°, 狭缝长度25 mm, 光谱分辨率12.7 nm, 空间分辨率1 mrad, 系统像差得到充分校正, 公差比较宽松。该系统的研究将为精准农业遥感应用提供一种思路。
Abstract
An imaging spectrometer in the short infrared waveband of 1.0-2.5 μm was obtained for the precision agriculture observation by air. The scientific performances parameters of the imaging spectrometer were analyzed for the requests of the precision agriculture. The perfect astigmatism corrected conditions were obtained based on the advanced Dyson imaging spectrometer. The enough axial and lateral spaces among each parts of the system guaranteed the arrangement of mechanisms of the slit, the detector and the optical elements. An imaging spectrometer with high optical performances as F number 1.5, the field of view 28°, the slit length 25 mm, the spectral resolution 12.7 nm and the spatial resolution 1 mrad was designed. The aberrations were totally corrected and the tolerances of the system were loose. The research will be helpful for application of precision agriculture remote sensing.
参考文献

[1] Whiting M L, Ustin S L, Zarco-Tejada, et al. Hyperspectral mapping of crop and soils for precision agriculture[C]// SPIE, 2006, 6298: 62980B.

[2] Saito Y, Kobayashi K. Proposal of optical farming: development of several optical sensing instruments for agriculture use[C]//SPIE, 2013, 8881: 888109.

[3] Wang C L, Tang B H, Huo X, et al. New method to estimate surface upwelling long-wave radiation from MODIS cloud-free data[J]. Opt Express, 2017, 25(12): A574-A588.

[4] Blanco X P, Orille C M, Couce B, et al. Analytical design of an Offner imaging spectrometer[J]. Opt Express, 2006, 14(20): 9156-9168.

[5] 罗刚银, 王弼陡, 陈玉琦, 等. Offner型消热差中波红外成像光谱仪设计[J]. 红外与激光工程, 2017, 46(11): 1101004.

    Luo Gangyin, Wang Bidou, Chen Yuqi, et al. Design of athermal mid-infrared imaging spectrometer based on Offner scheme[J]. Infrared and Laser Engineering, 2017, 46(11): 1101004. (in Chinese)

[6] 孙佳音, 李淳, 刘英, 等. 不同光栅常数下同心长波红外成像光谱仪对比[J]. 红外与激光工程, 2016, 45(7): 0720002.

    Sun Jiayin, Li Chun, Liu Ying, et al. Comparison of long-wave infrared imaging spectrometers with concentric under different grating constants[J]. Infrared and Laser Engineering, 2016, 45(7): 0720002. (in Chinese)

[7] Wynne C G. Monocentric telescopes for microlithography[J]. Opt Eng, 1987, 26: 300-303.

[8] Mouroulis P, Green R O, Wilson D W. Optical design of a coastal ocean imaging spectrometer[J]. Opt Express, 2008, 16(12): 9087-9096.

[9] Warren D W, Gutierrez D J, Keim E R. Dyson spectrometer for high-performance infrared applications[J]. Opt Eng, 2008: 47(10): 103601.

[10] Robert P C. Precision agriculture: New developments and needs in remote sensing and technologies[C]//SPIE, 2003, 5153: 85-94.

[11] Myers V I, Allen W A. Electrooptical remote sensing methods as nondestructive testing and measuring techniques in agriculture[J]. Appl Opt, 1968, 7(9): 1819-1838.

[12] Lobb D R. Theory of concentric designs for grating spectrometers[J]. Appl Opt, 1994, 33(13): 2648-2658.

[13] Yu L, Wang S R, Lin G Y, et al. Spectral broadband anastigmatic Wadsworth imaging spectrometer[J]. Opt Express, 2015, 23(1): 101-109.

于磊, 陈素娟, 陈结祥, 薛辉. 精准农业观测高数值孔径短波红外成像光谱仪光学系统[J]. 红外与激光工程, 2018, 47(12): 1218007. Yu Lei, Chen Sujuan, Chen Jiexiang, Xue Hui. Optical system of imaging spectrometer in short-wave infrared with high NA for precision agriculture observation[J]. Infrared and Laser Engineering, 2018, 47(12): 1218007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!