中国激光, 2019, 46 (1): 0110004, 网络出版: 2019-01-27   

激光测高卫星回波波形精细化模拟仿真方法研究

Refined Simulation Methods of Laser Altimetry Satellite Echo Waveform
作者单位
1 东北林业大学工程技术学院, 黑龙江 哈尔滨 150040
2 国家测绘地理信息局卫星测绘应用中心, 北京 100048
摘要
激光测高卫星的回波波形是其核心数据之一, 回波波形的仿真分析对卫星指标论证及数据处理具有重要的参考价值。综合考虑地物反射率、发射波形和激光断面阵列(LPA)这3个因素对回波仿真结果的影响, 并进行对比实验, 探讨了最优的模拟仿真方法。实验中选择某研究区, 以冰、云和陆地高程卫星(ICESat)/地球科学激光测高系统(GLAS)数据作为验证数据, 通过相关系数对回波仿真精度进行评价。结果表明:在考虑实际地物反射率和发射波形后可以明显提高回波仿真的精度, 仿真结果的相关系数从0. 9337提高到0.9492; 由于LPA的像素空间分辨率较低, 故得到的仿真精度误差较大, 通过3次样条插值提高像素分辨率后可使仿真精度提高到0.9513。
Abstract
The echo waveform is one of the core data from the laser altimetry satellite, and the simulation analysis of echo waveform has important reference value in parameters designing and data processing for the satellite. In this paper, the effects of three factors such as ground reflectivity, emission waveform and laser profile array (LPA) on the echo simulation results are considered, and the contrast experiment is conducted. The optimal simulation method is discussed. In the experiment, a certain research area is selected, and the data of ice, cloud and land elevation satellite (ICESat)/geo-science laser altimeter system (GLAS) is used as the verification data, and the echo simulation accuracy is evaluated by the correlation coefficients. The results show that the echo simulation accuracy can be significantly improved after the actual ground reflectivity and emission waveform are considered, and the correlation coefficient of the simulation results is improved from 0.9337 to 0.9492. Due to the low spatial resolution of the pixels in the LPA, there exists a large error in simulation accuracy. With the increase of pixel resolution by cubic spline interpolation, the simulation accuracy can be improved to 0.9513.
参考文献

[1] 唐新明, 李国元. 激光测高卫星的发展与展望[J]. 国际太空, 2017(11): 13-18.

    Tang X M, Li G Y. Development and prospect of laser altimetry satellite[J]. Space International, 2017(11): 13-18.

[2] Brenner A C, Dimarzio J P, Zwally H J. Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 321-331.

[3] Hyde P, Dubayah R, Peterson B, et al. Mapping forest structure for wildlife habitat analysis using waveform lidar: validation of montane ecosystems[J]. Remote Sensing of Environment, 2005, 96(3/4): 427-437.

[4] Drake J B, Dubayah R O, Clark D B, et al. Estimation of tropical forest structural characteristics using large-footprint lidar[J]. Remote Sensing of Environment, 2002, 79(2/3): 305-319.

[5] Carabajal C C, Harding D J, Suchdeo V P, et al. Development of AN ICESat geodetic control database and evaluation of global topographic assets[C]. American Geophysical Union, Fall Meeting 2010, 2010: C41A-0494.

[6] 李春来, 任鑫, 刘建军, 等. 嫦娥一号激光测距数据及全月球DEM模型[J]. 中国科学: 地球科学, 2010, 40(3): 281-293.

    Li C L, Ren X, Liu J J, et al. Laser altimetry data of Chang′E-1 and the global lunar DEM model[J]. Scientia Sinica Terrae: Earth Sciences, 2010, 40(3): 281-293.

[7] 王建宇, 舒嵘, 陈卫标, 等. 嫦娥一号卫星载激光高度计[J]. 中国科学: 物理学 力学 天文学, 2010, 40(8): 1063-1070.

    Wang J Y, Shu R, Chen W B, et al. Chang′E-1 satellite-mounted laser altimeter[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2010, 40(8): 1063-1070.

[8] 唐新明, 李国元, 高小明, 等. 卫星激光测高严密几何模型构建及精度初步验证[J]. 测绘学报, 2016, 45(10): 1182-1191.

    Tang X M, Li G Y, Gao X M, et al. The rigorous geometric model of satellite laser altimeter and preliminarily accuracy validation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1182-1191.

[9] 李国元, 唐新明. 资源三号02星激光测高精度分析与验证[J]. 测绘学报, 2017, 46(12): 1939-1949.

    Li G Y, Tang X M. Analysis and validation of ZY-3 02 satellite laser altimetry data[J].Acta Geodaetica et Cartographica Sinica, 2017, 46(12): 1939-1949.

[10] Gardner C S. Target signatures for laser altimeters: an analysis[J]. Applied Optics, 1982, 21(3): 448-453.

[11] Abshire J B, McGarry J F, Pacini L K, et al. Laser altimetry simulator. version 3.0: user′s guide[R]. Lanham: Science Systems and Applications, Inc., 1994.

[12] Bryan Blair J, Hofton M A. Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data[J]. Geophysical Research Letters, 1999, 26(16): 2509-2512.

[13] Yadav G K. Simulation of ICESat/GLAS full-waveform over highly rugged terrain[D]. Enschede: University of Twente, 2010.

[14] 李松, 周辉, 石岩, 等. 激光测高仪的回波信号理论模型[J]. 光学 精密工程, 2007, 15(1): 33-39.

    Li S, Zhou H, Shi Y, et al. Theoretical model for return signal of laser altimeter[J]. Optics and Precision Engineering, 2007, 15(1): 33-39.

[15] 周辉, 李松. 激光测高仪接收信号波形模拟器[J]. 中国激光, 2006, 33(10): 1402-1406.

    Zhou H, Li S. Waveform simulator of return signal for laser altimeter[J]. Chinese Journal of Lasers, 2006, 33(10): 1402-1406.

[16] 潘浩, 李国元, 王华斌, 等. 一般地形大光斑激光测高回波模拟研究[J]. 地理信息世界, 2015, 22(2): 82-87.

    Pan H, Li G Y, Wang H B, et al. Research on large spot laser altimetry echo simulation of general terrain[J]. Geomatics World, 2015, 22(2): 82-87.

[17] Gardner C S. Ranging performance of satellite laser altimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 1061-1072.

[18] Bae S, Urban T. Summary of Laser Profile Array (LPA) Parameter Estimation[EB/OL]. (2011-08-01). https:∥nsidc.org/sites/nsidc.org/files/files/CSR_Summary_of_LPA_param_est_v2.pdf

[19] 袁小棋, 李国元, 唐新明, 等. 星载激光光斑影像质心自动提取方法[J]. 测绘学报, 2018, 47(2): 135-141.

    Yuan X Q, Li G Y, Tang X M, et al. Centroid automatic extraction of spaceborne laser spot image[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 135-141.

[20] 李国元, 唐新明, 张重阳, 等. 多准则约束的ICESat/GLAS高程控制点筛选[J]. 遥感学报, 2017, 21(1): 96-104.

    Li G Y, Tang X M, Zhang C Y, et al. Multi-criteria constraint algorithm for selecting ICESat/GLAS data as elevation control points[J]. Journal of Remote Sensing, 2017, 21(1): 96-104.

[21] Duong V H. Processing and application of ICESat large footprint full waveform laser range data[D]. Delft: Delft University of Technology, 2010.

[22] Lefsky M A, Harding D J, Keller M, et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophysical Research Letters, 2005, 32(22): L22S02.

[23] 马跃, 李松, 阳凡林, 等. 激光测高仪平顶高斯光束条件下的回波参数模型[J]. 中国激光, 2015, 42(4): 0413002.

    Ma Y, Li S, Yang F L, et al. Model of waveform parameters for laser altimeter system under flattened Gaussian beams[J]. Chinese Journal of Lasers, 2015, 42(4): 0413002.

[24] Bae S, Smith N, Schutz B E. The GLAS algorithm theoretical basis document for precision attitude determination (PAD)[R]. Greenbelt: NASA, 2013.

门华涛, 李国元, 陈继溢, 赵严铭, 邢艳秋. 激光测高卫星回波波形精细化模拟仿真方法研究[J]. 中国激光, 2019, 46(1): 0110004. Men Huatao, Li Guoyuan, Chen Jiyi, Zhao Yanming, Xing Yanqiu. Refined Simulation Methods of Laser Altimetry Satellite Echo Waveform[J]. Chinese Journal of Lasers, 2019, 46(1): 0110004.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!