Frontiers of Optoelectronics, 2018, 11 (2): 163–188, 网络出版: 2018-10-07  

Optical signal processing based on silicon photonics waveguide Bragg gratings: review

Optical signal processing based on silicon photonics waveguide Bragg gratings: review
作者单位
1 Institut National de la Recherche Scientifique – Centre Energie, Materiaux et Telecommunications (INRS-EMT), Varennes, QC J3X 1S2 Canada
2 Department of Electrical and Computer Engineering, University of British Columbia (UBC), Vancouver, British Columbia, V6T 1Z4 Canada
3 Institute of Electromagnetic Fields, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
摘要
Abstract
This paper reviews the work done by researchers at INRS and UBC in the field of integrated microwave photonics (IMWPs) using silicon based waveguide Bragg gratings (WBGs). The grating design methodology is discussed in detail, including practical device fabrication considerations. On-chip implementations of various fundamental photonic signal processing units, including Fourier transformers, Hilbert transformers, ultrafast pulse shapers etc., are reviewed. Recent progress on WBGsbased IMWP subsystems, such as true time delay elements, phase shifters, real time frequency identification systems, is also discussed.
参考文献

[1] Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J, Kallfass I. Wireless sub-THz communication system with high data rate. Nature Photonics, 2013, 7(12): 977–981

[2] Eyre J, Bier J. The evolution of DSP processors. IEEE Signal Processing Magazine, 2000, 17(2): 43–51

[3] Kuo S M, Lee B H, Tian W. Real-time Digital Signal Processing: Fundamentals, Implementations and Applications. New York: John Wiley & Sons, 2013

[4] Seeds A J, Shams H, Fice M J, Renaud C C.Terahertz photonics for wireless communications. Journal of Lightwave Technology, 2015, 33 (3): 579–587

[5] Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H. Terahertz wireless communications based on photonics technologies. Optics Express, 2013, 21(20): 23736–23747

[6] Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887

[7] Iezekiel S. Microwave Photonics: Devices and Applications. New York: John Wiley & Sons, 2009

[8] Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330

[9] Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335

[10] Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538

[11] Roeloffzen C G, Zhuang L, Taddei C, Leinse A, Heideman R G, van Dijk PW, Oldenbeuving R M, Marpaung D A, Burla M, Boller K J. Silicon nitride microwave photonic circuits. Optics Express, 2013, 21(19): 22937–22961

[12] Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE Journal of Quantum Electronics, 2016, 52: 1–12

[13] Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon Microring Resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73

[14] Chrostowski L, Hochberg M. Silicon Photonics Design: From Devices to Systems. Cambridge: Cambridge University Press, 2015

[15] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263–1276

[16] Bazargani H P, Burla M, Chrostowski L, Azana J. Photonic Hilbert transformers based on laterally apodized integrated waveguide Bragg gratings on a SOI wafer. Optics Letters, 2016, 41(21): 5039–5042

[17] Burla M, Wang X, Li M, Chrostowski L, Azana J. Wideband dynamic microwave frequency identification system using a lowpower ultracompact silicon photonic chip. Nature Communications, 2016, 7: 13004

[18] Burla M, Li M, Cortes L R, Wang X, Fernandez-Ruiz M R, Chrostowski L, Azana J. Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon. Optics Letters, 2014, 39(21): 6241–6244

[19] Burla M, Cortes L R, Li M, Wang X, Chrostowski L, Azana J. Onchip programmable ultra-wideband microwave photonic phase shifter and true time delay unit. Optics Letters, 2014, 39(21): 6181–6184

[20] Burla M, Cortes L R, Li M, Wang X, Chrostowski L, Azana J. Integrated waveguide Bragg gratings for microwave photonics signal processing. Optics Express, 2013, 21(21): 25120–25147

[21] Dolgaleva K, Malacarne A, Tannouri P, Fernandes L A, Grenier J R, Aitchison J S, Azana J, Morandotti R, Herman P R, Marques P V. Integrated optical temporal Fourier transformer based on a chirped Bragg grating waveguide. Optics Letters, 2011, 36(22): 4416–4418

[22] Rutkowska K A, Duchesne D, Strain M J, Morandotti R, Sorel M, Azana J. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings. Optics Express, 2011, 19(20): 19514–19522

[23] Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44

[24] Othonos A. Fiber Bragg gratings. Review of Scientific Instruments, 1997, 68 (12): 4309–4341

[25] Vivien L, Osmond J, Fedeli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide. Optics Express, 2009, 17(8): 6252–6257

[26] Skaar J. Synthesis and Characterization of Fiber Bragg Gratings. Dissertation for the Doctoral Degree. Trondheim, Norway: Norwegian University of Science and Technology, 2000

[27] Sima C, Gates J C, Holmes C, Mennea P L, Zervas MN, Smith P G. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication. Optics Letters, 2013, 38(17): 3448–3451

[28] Simard A D, Strain M J, Meriggi L, Sorel M, LaRochelle S. Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses. Optics Letters, 2015, 40(5): 736–739

[29] Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225

[30] Simard A D, Belhadj N, Painchaud Y, LaRochelle S. Apodized silicon-on-insulator Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(12): 1033–1035

[31] Wiesmann D, David C, Germann R, Emi D, Bona G. Apodized surface-corrugated gratings with varying duty cycles. IEEE Photonics Technology Letters, 2000, 12(6): 639–641

[32] Tan D T, Ikeda K, Fainman Y. Cladding-modulated Bragg gratings in silicon waveguides. Optics Letters, 2009, 34(9): 1357–1359

[33] Hung Y J, Lin K H, Wu C J, Wang C Y, Chen Y J. Narrowband reflection from weakly coupled cladding-modulated Bragg gratings. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 218–224

[34] Wang X, Wang Y, Flueckiger J, Bojko R, Liu A, Reid A, Pond J, Jaeger N A, Chrostowski L. Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings. Optics Letters, 2014, 39(19): 5519–5522

[35] Cheng R, Chrostowski L. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings. Optics Letters, 2018, 43(5): 1031–1034

[36] Agrawal G P, Radic S. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. IEEE Photonics Technology Letters, 1994, 6(8): 995–997

[37] Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 2002, 41(19): 3978–3987

[38] Stoll H, Yariv A. Coupled-mode analysis of periodic dielectric waveguides. Optics Communications, 1973, 8(1): 5–8

[39] Yariv A. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 1973, 9(9): 919–933

[40] Streifer W, Scifres D, Burnham R. Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers. IEEE Journal of Quantum Electronics, 1975, 11(11): 867–873

[41] Zhang Y, Holzwarth N, Williams R. Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Physical Review B: Condensed Matter and Materials Physics, 1998, 57(20): 12738–12750

[42] Lumerical FDTD, 2018

[43] Pendry J. Photonic band structures. Journal of Modern Optics, 1994, 41(2): 209–229

[44] Li Z Y, Lin L L. Photonic band structures solved by a plane-wavebased transfer-matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 67(4 Pt 2): 046607

[45] Applied Nanotools Inc., 2018

[46] Simard A D, Beaudin G, Aimez V, Painchaud Y, Larochelle S. Characterization and reduction of spectral distortions in silicon-oninsulator integrated Bragg gratings. Optics Express, 2013, 21(20): 23145–23159

[47] Ayotte N, Simard A D, LaRochelle S. Long integrated Bragg gratings for SOI wafer metrology. IEEE Photonics Technology Letters, 2015, 27(7): 755–758

[48] Simard A D, Painchaud Y, LaRochelle S. Integrated Bragg gratings in spiral waveguides. Optics Express, 2013, 21(7): 8953–8963

[49] Wang X, Yun H, Chrostowski L. Integrated Bragg gratings in spiral waveguides. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO). San Jose, California: OSA, 2013, CTh4F.8

[50] Ma M, Chen Z, Yun H, Wang Y, Wang X, Jaeger N A F, Chrostowski L. Apodized spiral Bragg grating waveguides in silicon-on-insulator. IEEE Photonics Technology Letters, 2018, 30(1): 111–114

[51] Simard A D, Ayotte N, Painchaud Y, Bedard S, LaRochelle S. Impact of sidewall roughness on integrated Bragg gratings. Journal of Lightwave Technology, 2011, 29(24): 3693–3704

[52] Azana J, Muriel M A. Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings. IEEE Journal of Quantum Electronics, 2000, 36(5): 517–526

[53] Azana J, Berger N K, Levit B, Fischer B. Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse. Applied Optics, 2004, 43(2): 483–490

[54] Yariv A, Yeh P. Photonics: Optical Electronics in Modern Communications. Oxford: Oxford University Press, 2006

[55] Tong Y, Chan L, Tsang H. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electronics Letters, 1997, 33(11): 983–985

[56] Muriel M A, Azana J, Carballar A. Real-time Fourier transformer based on fiber gratings. Optics Letters, 1999, 24(1): 1–3

[57] Coppinger F, Bhushan A, Jalali B. Photonic time stretch and its application to analog-to-digital conversion. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1309–1314

[58] Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photonics Technology Letters, 2003, 15(4): 581–583

[59] Solli D, Chou J, Jalali B. Amplified wavelength–time transformation for real-time spectroscopy. Nature Photonics, 2008, 2(1): 48–51

[60] Ouellette F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Optics Letters, 1987, 12(10): 847–849

[61] Lepetit L, Cheriaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 1995, 12(12): 2467–2474

[62] Weiner A. Ultrafast Optics, volume 72. New York: John Wiley & Sons, 2011

[63] Rivas L M, Strain M J, Duchesne D, Carballar A, Sorel M, Morandotti R, Azana J. Picosecond linear optical pulse shapers based on integrated waveguide Bragg gratings. Optics Letters, 2008, 33(21): 2425–2427

[64] Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Azana J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419–1421

[65] Li M, Dumais P, Ashrafi R, Bazargani H P, Quelene J B, Callender C, Azana J. Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach–Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389

[66] Bazargani H P, Burla M, Azana J. Experimental demonstration of sub-picosecond optical pulse shaping in silicon based on discrete space-to-time mapping. Optics Letters, 2015, 40(23): 5423–5426

[67] Bazargani H P, Azana J. Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. Optics Express, 2015, 23(18): 23450–23461

[68] Bazargani H, Burla M, Chen Z, Zhang F, Chrostowski L, Azana J. Long-duration optical pulse shaping and complex coding on SOI. IEEE Photonics Journal, 2016, 8(4): 1–7

[69] Deng N, Liu Z, Wang X, Fu T, Xie W, Dong Y. Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1 × 10–17 instability. Optics Express, 2018, 26(1): 339–346

[70] Liu Y, Marpaung D, Choudhary A, Eggleton B J. Highly selective and reconfigurable Si3N4 RF photonic notch filter with negligible RF losses. In: Proceedings of Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE, 2017, paper SM1O.7

[71] Fandino J S, Munoz P, Domenech D, Capmany J. A monolithic integrated photonic microwave filter. Nature Photonics, 2017, 11(2): 124–129

[72] Zhuang L, Roeloffzen C G, Hoekman M, Boller K J, Lowery A J. Programmable photonic signal processor chip for radio frequency applications. Optica, 2015, 2(10): 854–859

[73] Capmany J, Gasulla I, Perez D. The programmable processor. Nature Photonics, 2016, 10: 6–8

, , , , , , . Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Frontiers of Optoelectronics, 2018, 11(2): 163–188. Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, Jose Azana. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Frontiers of Optoelectronics, 2018, 11(2): 163–188.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!