光学学报, 2005, 25 (12): 1634, 网络出版: 2006-05-23   

用于光纤拉曼放大器抽运源的单级光纤拉曼激光器

Single-Stage Fiber Raman Lasers for Pupming Fiber Raman Amplifiers
作者单位
华中科技大学光电子工程系,武汉 430074
摘要
抽运光源是光纤拉曼放大器应用于密集波分复用系统的关键技术,设计了一种紧凑型的808 nm激光二极管抽运的基于钒酸钇(Nd3+∶YVO4)晶体1342 nm固体激光器模块,提出利用上述1342 nm固体激光器抽运基于光纤光栅的单级全光纤型拉曼谐振器获得1.4 μm激光输出的光纤拉曼激光器,分析了固体激光器的阈值特性、性能优化方法和单级光纤拉曼谐振器的设计方法。上述1342 nm固体激光器模块在抽运功率2 W时获得了最大655 mW的激光输出功率和42.6%的斜率效率,单级拉曼谐振器的1342 nm到1.4 μm光功率转换斜率效率达75%,在1425 nm、1438 nm、1455 nm和1490 nm处的输出功率达到300 mW以上。最后给出基于1.4 μm光纤拉曼激光器抽运的宽带平坦放大的光纤拉曼放大器的结构参量和性能测试结果。
Abstract
The pumping source is the key technology of fiber Raman amplifiers applied in dense wavelength division multiplexing systems. A compact 1342 nm Nd3+∶YVO4 diode-pumped solid state laser(DPSSL) module pumped by 808 nm laser diodes is developed. A single-stage 1.4 μm fiber Raman laser is constructed by pumping a single-stage fiber Raman resonator based on fiber Bragg gratings with such 1342 nm diode-pumped solid-state laser module. The threshold property, the optimized setup of the diode-pumped solid-state laser module and the design scheme of the single-stage fiber Raman resonator are analyzed respectively. The diode-pumped solid-state laser module is presented with the total laser power of 655 mW and the slope efficiency of 42.6% pumped by a 2 W 808 nm laser diode. The light power conversion slope efficiency of the single-stage fiber Raman resonator achieves 75% and the total laser power at 1425 nm, 1438 nm, 1455 nm and 1490 nm achieves 300 mW each. Finally, a broadband, flat-gain distributed fiber Raman amplifier pumped by such lasers is presented.
参考文献

[1] . Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes[J]. IEEE J. Selected Topics in Quantum Electron., 2001, 7(1): 3-16.

[2] Zhou Jun, Lou Qihong, Li Tiejun et al.. High power fiber lasers for Raman amplification[J]. Laser and Optoelectronics Progress, 2000, 39(8): 40~46 (in Chinese)
周军,楼祺洪,李铁军 等. 用于光纤拉曼放大的高功率光纤激光器[J]. 激光与光电子学进展, 2000, 39(8): 40~46

[3] . V. Chernikov, Y. Zhu, R. Kashyap et al.. High-gain, monolithic, cascaded fiber Raman amplifier operating at 1.3 μm[J]. Electron. Lett., 1995, 31(6): 472-473.

[4] . Xiong, N. Moore, Z. G. Li et al.. 10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers[J]. J. Lightwave Technol., 2003, 21(10): 2377-2381.

[5] . D. Mermelstein, C. Headley, J. C. Bouteiller et al.. Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening[J]. IEEE Phonton. Technol. Lett., 2001, 13(12): 1286-1288.

[6] . . Cascaded Raman fiber laser for stable dual-wavelength operation[J]. Electron. Lett., 2001, 37(12): 740-741.

[7] . High-efficiency TEM00 Nd∶YVO4 laser longitudinally pumped by a high-power array[J]. Opt. Lett., 1995, 20(3): 157-159.

[8] . Single-frequency operation in solid-state laser materials with short absorption depths[J]. IEEE J. Quant. Electron., 1990, 26(9): 1457-1459.

[9] . Y. Fan, M. R. Kokta. End-pumped Nd∶LaF3 and Nd∶LaMgAl11O19 lasers[J]. IEEE J. Quant. Electron., 1989, 25(8): 1845-1849.

[10] . . Distributed fiber Raman amplifiers with localized loss[J]. J. Lightwave Technol., 2003, 21(5): 1286-1293.

[11] . Perlin, Herbert G. Winful. Optimal design of flat-gain wide-band fiber Raman amplifiers[J]. J. Lightwave Technol., 2003, 20(2): 250-254.

[12] . . Efficient numerical method for predicting the polarization-dependent Raman gain in fiber Raman amplifiers[J]. J. Opt. Soc. Am. (A), 2004, 21(2): 263-266.

张敏明, 刘德明, 王英, 黄德修. 用于光纤拉曼放大器抽运源的单级光纤拉曼激光器[J]. 光学学报, 2005, 25(12): 1634. 张敏明, 刘德明, 王英, 黄德修. Single-Stage Fiber Raman Lasers for Pupming Fiber Raman Amplifiers[J]. Acta Optica Sinica, 2005, 25(12): 1634.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!