光子学报, 2018, 47 (4): 0406001, 网络出版: 2018-03-15  

剪扭作用下塑料光纤力光转换特性试验研究

Experiment of Optical Response Characteristics of Plastic Optical Fibers under Shear and Torsion Loading
作者单位
1 河海大学 水文水资源与水利工程科学国家重点实验室, 南京 210098
2 河海大学 水利水电学院, 南京 210098
3 江苏省水利勘测设计研究院有限公司, 江苏 扬州 225127
摘要
为了研究滑开型和撕开型裂缝条件下塑料光纤的光学感知特性, 分别进行了剪切和扭转作用下塑料光纤的力光转换特性试验.结果表明, 在错动位移由0增加至0.5 mm的过程中, 光损耗值和菲涅尔反射值与错动位移呈近似线性关系, 灵敏度分别达到15.6 dB/mm和5.9 dB/mm.塑料光纤内部的光损耗特性对剪切作用较敏感, 而对扭转作用不敏感, 光损耗水平保持在1 dB左右.滑开型和撕开型裂缝条件下塑料光纤具有相似的光学感知特性, 菲涅尔反射值和光损耗值都可以作为裂缝错动位移的监测指标, 其中, 光损耗水平变化幅度更大, 对裂缝的感知更敏感.
Abstract
Experiments to study the optical response characteristics of plastic optical fibers under shear and torsion conditions are conducted respectively which are correspond to the conditions when sliding type and tearing type cracks occurred in structures. Results indicate that during the process when the shear displacement increase from 0 to 0.5 mm, the optical loss and Fresnel reflection are linear related to the shear displacement, and the sensitivity of which are 15.6 dB/mm and 5.9 dB/mm respectively, indicating that plastic optical fibers have better optical sensibility to cracks under shear loading conditions, while the sensitivity is low under torsion loading, the optical loss of which is about 1 dB. It can be concluded that plastic optical fibers have the same optical response characteristics when sliding mode or tearing mode cracks occurred in structures. Both Fresnel reflection and optical loss can be used as crack monitoring index among which optical loss is considered to be more sensitive.
参考文献

[1] ZHENG Dong-jian, HUO Zhong-yan, LI Bo. Arch-dam crack deformation monitoring hybrid model based on XFEM[J]. Science China, 2011, 54: 2611–2617.

[2] 钱飞, 佟剑杰. 混凝土坝裂缝分布式光纤监测复用能力研究[J]. 水电能源科学, 2010, 28(1): 70-72+109.

    QIAN Fei, TONG Jian-jie. Study on multiplex capacity of distributed optical fiber monitoring for cracks of concrete dam[J]. Water Resources and Power, 2010, 28(1): 70-72+109.

[3] ZHAO Jin-lei, BAO Teng-fei, KUNDU T. Wide range fiber displacement sensor based on bending loss[J]. Journal of Sensors, 2016,2016: 4201870.

[4] 包腾飞, 赵津磊, 张万祝, 等. 新型可测量大变形的弯曲型光纤光栅裂缝传感器[J]. 中国科学: 技术科学, 2014, 10(44): 1013-1019.

    BAO Teng-fei, ZHAO Jin-lei, ZHANG Wan-zhu, et al. Bend type fiber Bragg grating crack sensor with big measurement range[J]. Scientia Sinica(Technologica), 2014, 10(44): 1013-1019.

[5] LAFLAMME S, KOLLOSCHE M, CONNOR J, et al. Soft capacitive sensor for structural health monitoring of large-scale systems[J]. Structural Control and Health Monitoring, 2012, 19(1): 70-81.

[6] ZHAO Jin-lei, BAO Teng-fei, CHEN Rui. Crack monitoring capability of plastic optical fibers for concrete structures[J]. Optical Fiber Technology, 2015,(24): 70-76.

[7] 包腾飞, 赵津磊, 戚丹. 塑料光纤在裂缝监测中的性能[J]. 光子学报, 2015, 44(10): 1006001.

    BAO Teng-fei, ZHAO Jin-lei, QI Dan. Properties of plastic optical fibers in crack monitoring[J]. Acta Photonica Sinica, 2015, 44(10): 1006001.

[8] 赵津磊, 包腾飞, 戚丹. 塑料光纤在裂缝监测中应用的可行性研究[J]. 光电子·激光, 2014, 25(10): 1943-1948.

    ZHAO Jin-lei, BAO Teng-fei, QI Dan. Feasibility study on application of plastic optical fiber in crack monitoring[J]. Journal of Optoelectronics·Laser, 2014, 25(10): 1943-1948.

[9] TAKEDA N, KOSAKA T, ICHIYAMA T. Detection of transverse cracks by embedded plastic optical fiber in FRP laminates[A]. Smart Structures and Materials 1999: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials[C]. Newport Beach: 1999.

[10] KUANG C, CANTWELL J, THOMAS C. Crack detection and vertical deflection monitoring in concrete beams using plastic optical fibre sensors[J]. Measurement Science and Technology, 2003, 14(2): 205-216.

[11] KUANG C, QUEK T, MAALEJ M. Assessment of an extrinsic polymer-based optical fibre sensor for structural health monitoring[J]. Measurement Science and Technology, 2004, 15(10): 2133-2141.

[12] LIEHR S, LENKE P, KREBBER K, et al. Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles[C]. Optical Sensors 2008, Strasbourg: 2008.

[13] LIEHR S, LENKE P, WENDT M, et al. Distributed polymer optical fiber sensors in geotextiles for monitoring of earthwork structures[C]. 4th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-4), Zurich: 2009.

[14] LIEHR S, LENKE P, WENDT M, et al. Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring[J]. IEEE Sensors Journal. 2009, 9(11): 1330-1338.

[15] LIEHR S, WENDT M, KREBBER K. Distributed perfluorinated POF strain sensor using OTDR and OFDR techniques[C]. 20th International Conference on Optical Fibre Sensors, Edinburgh: 2009.

[16] ZUBIA J, ARRUE J, MENDIOROZ A. Theoretical analysis of the torsion-induced optical effect in a plastic optical fiber[J]. Optical Fiber Technology, 1997, 3(2): 162-167.

包腾飞, 赵津磊, 李涧鸣. 剪扭作用下塑料光纤力光转换特性试验研究[J]. 光子学报, 2018, 47(4): 0406001. BAO Teng-fei, ZHAO Jin-lei, LI Jian-ming. Experiment of Optical Response Characteristics of Plastic Optical Fibers under Shear and Torsion Loading[J]. ACTA PHOTONICA SINICA, 2018, 47(4): 0406001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!