中国激光, 2012, 39 (5): 0502002, 网络出版: 2012-05-02  

靶场编组站镜箱温度场稳定性影响及优化分析

Stability Impact and Optimization Analysis of Temperature Field of Switchyard Mirror Box in ICF Target Area
作者单位
重庆大学机械工程学院, 重庆 400030
摘要
激光惯性约束聚变(ICF)装置中靶场编组站镜箱内的温度控制是实现光学元件最小变形,保证光束质量的重要环节。建立靶场编组站镜箱数学和物理模型,采用流体动力学分析软件对靶场编组站镜箱内温度场分布进行了数值模拟,计算结果与实测结果吻合。分析了不同鼓风速度v及鼓风角度θ对镜箱内温度场分布的影响及稳定时间,结果表明鼓风速度越大,镜箱内温度场趋于稳定越快,而风速v大于1.3 m/s后,稳定时间的减小不明显;鼓风角度对镜箱内温度场稳定影响较大,有最佳值。当鼓风速度v为1.3 m/s,鼓风角度θ为20°时镜箱内温度场稳定时间最短,为77 min。且在鼓风机关闭后32 min内,镜片温差在允许范围内,最大值为0.009 K。
Abstract
In order to achieve minimum deformation of optical components and ensure beam quality, temperature control of switchyard mirror box in target area of the laser inertial confinement fusion (ICF) devices is very important. Mathematical and physical models of switchyard box in target area are established. FLUENT software is used to analyze the temperature field inside mirror box and analysis result is consistent with the measured result. The temperature field distribution and stability time inside mirror box impacted by different wind velocities and angles are analyzed, the results show that the greater the speed, the faster the temperature field inside mirror box stabilized. And when wind velocity v is greater than 1.3 m/s, the decrease of stability time is not obvious. Wind angle shows great impact on the steady of temperature inside mirror box and the best value is obtained. When wind velocity v is 1.3 m/s and wind angle θ is 20°, the stability time inside mirror box is the shortest with the value of 77 min. And within 32 min after the blower turned off, the temperature difference between the mirror is in the allowable range, with a maximum of 0.009 K.
参考文献

[1] 师智全. 大型固体激光装置光学元件结构稳定性分析研究[D]. 绵阳: 中国工程物理研究院, 2003. 84~89

    Shi Zhiquan. The Existence and Asymptotic Property of the Solutions for Some Nonlinear Evolution Equations[D]. Mianyang: China Academy of Engineering Physics, 2003. 84~89

[2] David J. Trummer, Richard J. Foley, Gene S. Shaw. Stability of optical elements in the NIF target area building[C]. SPIE, 1999, 3492: 363~371

[3] Erik A. Swensen, Alex A. Barron, Charles R. Farrar et al.. Random vibration sensitivity studies of modeling uncertainties in the NIF structures[C]. Proceedings of the International Modal Analysis Conference-IMAC, 1997, 2: 1172~1180

[4] 张军伟, 周忆, 周海 等. 瞬态温度变化对大口径光学元件的影响[J]. 中国激光, 2009, 36(2): 333~337

    Zhang Junwei, Zhou Yi, Zhou Hai et al.. Effect of transient change of temperature on large-aperture optical element[J]. Chinese J. Lasers, 2009, 36(2): 333~337

[5] 赵东峰, 戴亚平, 尹宪华 等. 高功率激光装置靶场光学系统的误差分析[J]. 中国激光, 2004, 31(12): 1425~1428

    Zhao Dongfeng, Dai Yaping, Yin Xianhua et al.. Error analysis for the optical system of target area on high power laser facility[J]. Chinese J. Lasers, 2004, 31(12): 1425~1428

[6] 王汝冬, 田伟, 王平 等. 温度变化对胶粘结透镜面形精度的影响[J]. 中国激光, 2011, 38(8): 0808002

    Wang Rudong, Tian Wei, Wang Ping et al.. Effect of temperature change on the surface accuracy of bonded lens[J]. Chinese J. Lasers, 2011, 38(8): 0808002

[7] 杨淑娟. ICF驱动器靶场编组站热稳定性分析研究[D]. 重庆: 重庆大学, 2009. 1~11

    Yang Shujuan. Thermal Stability Analysis and Research of Switchyard in ICF Driver′s Target Area[D]. Chongqing: Chongqing University, 2009. 1~11

[8] 周忆, 杨淑娟, 张军伟 等. 惯性约束聚变靶场编组站大口径光学元件的热变形分析[J]. 中国激光, 2010, 37(1): 125~130

    Zhou Yi, Yang Shujuan, Zhang Junwei et al.. Thermal transfiguration analysis for the large aperture optical element of switchyard in ICF driver target area[J]. Chinese J. Lasers, 2010, 37(1): 125~130

[9] 黄宏彪, 曾台英, 张涛 等. 神光Ⅱ升级装置中靶室系统的稳定性设计与分析[J]. 中国激光, 2009, 36(8): 1986~1990

    Huang Hongbiao, Zeng Taiying, Zhang Tao et al.. Stability design and analysis of target chamber system in SG Ⅱ upgrade facility[J]. Chinese J. Lasers, 2009, 36(8): 1986~1990

[10] 王福军. 计算流体动力学分析[M]. 北京: 清华大学出版社, 2004. 1~12

    Wang Fujun. Computational Fluid Dynamics Analysis[M]. Beijing: Tsinghua University Press, 2004. 1~12

[11] 杨嘉, 吴祥生, 张锦松. CFD在室内气流组织模拟中的应用研究[C]. 西南地区暖通动力及空调制冷学术文集, 2001. 95~98

    Yang Jia, Wu Xiangsheng, Zhang Jinsong. Research of the CFD technology in indoor air-flow organization[C]. Academic Papers of HVAC Power and Air Conditioning in Southwest Area, 2001. 95~98

[12] B. E. Launder, D. B. Spalding. Lectures in Mathematical Models of Turbulence[M]. London: New York Academic Press, 1972. 90~110

[13] B. J. Lee, Z. M. Zhang. Coherent thermal emission from modified-periodic multilayer structures[J]. J. Heat Transfer, 2007, 129(1): 17~26

[14] 斯托克. 物理手册[M]. 吴锡真, 李祝霞, 陈师平 译. 北京: 北京大学出版社, 2003. 176~705

    Horst Stocker. Physical Handbook[M]. Wu Xizhen, Li Zhuxia, Chen Shiping Transl.. Beijing: Peking University Press, 2003. 176~705

[15] 冯斌, 周忆, 张军伟 等. 大口径光学元件热稳定性初步分析[J]. 重庆大学学报(自然科学版), 2006, 29(10): 74~77

    Feng Bin, Zhou Yi, Zhang Junwei et al.. Preliminary analysis of thermal influence on the large aperture optical elements[J]. Journal of Chongqing University (Natural Science Edition), 2006, 29(10): 74~77

周忆, 杨品, 廖云飞, 刘朋威, 左东. 靶场编组站镜箱温度场稳定性影响及优化分析[J]. 中国激光, 2012, 39(5): 0502002. Zhou Yi, Yang Pin, Liao Yunfei, Liu Pengwei, Zuo Dong. Stability Impact and Optimization Analysis of Temperature Field of Switchyard Mirror Box in ICF Target Area[J]. Chinese Journal of Lasers, 2012, 39(5): 0502002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!