光电子快报(英文版), 2017, 13 (3): 179, Published Online: Sep. 13, 2018  

Time constant optimization of solar irradiance absolute radiometer

Author Affiliations
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Mechanical Engineering, University of South China, Hengyang 421001, China
Abstract
We experimentally evaluate and optimize the time constant of solar irradiance absolute radiometer (SIAR). The systemic error introduced by variable time constant is studied by a finite element method. The results shown that, with a classic time constant of 30 s for SIAR, the systemic errors are 0.06% in the midday and 0.275% in the morning and afternoon. The uncertainty level which can be considered negligible for SIAR is also investigated, and it is suggested that the uncertainty level has to be less than 0.02%. Then, combining the requirement of international comparison with these two conclusions, we conclude that the suitable time constant for SIAR is 20 s.
References

[1] G. Kopp, A. Fehlmann, W. Finsterle, D. Harber, K. Heuerman and R. Wilson, Metrologia 49, S29 (2012).

[2] T. Pulli, T. Donsberg, T. Poikonen, F. Manoocheri, P. Karha and E. Ikonen, Light: Science & Applications 4, e332 (2015).

[3] H. Kyle, D. Hoyt and J. Hickey, Solar Physics 152, 9 (1994).

[4] Y. Wang, X. Hu, H. Wang, X. Ye and W. Fang, Optics and Precision Engineering 23, 1807 (2015). (in Chinese)

[5] D.Yang, W.Fang, X.Ye and B. Song, Optics and Precision Engineering 23, 1813 (2015). (in Chinese)

[6] B. Song, X. Ye, D. Yang, M. Jiang and W. Fang, Optics and Precision Engineering 23, 1903 (2015). (in Chinese)

[7] X. Tang, W. Fang and Y. Wang, Chinese Journal of Lasers 43, 0408003 (2016).

[8] W. Fang, B. Yu, H. Yao, Z. Li, C. Gong and X. Jin, Acta Optica Sinica 23, 112 (2003). (in Chinese)

[9] H. Wang, H. Li, and W. Fang, Applied Optics 53, 1718 (2014).

[10] Z. Yang, N. Lu, J Shi, P Zhang, C Dong and J. Yang, IEEE Transaction on Geoscience and Remote Sensing 50, 4846 (2012).

[11] A. Rogalski and K. Chrzanowski, Metrology and Measurement Systems 21, 565 (2014).

[12] W. Fang, H. Wang, H. Li and Y. Wang, Solar Physics 289, 4711 (2014).

[13] Z. Yang, W. Fang, Y. Luo and Z. Xia, Chinese Optics Letters 12, 101202 (2014).

[14] W. Pang, X. Zheng, J. Li, X. Shi, H. Wu, M. Xia, D. Gao, J. Shi, T. Qi and Q. Kang, Chinese Optics Letters 13, 051201 (2015).

[15] G. Kopp and G. Lawrence, Solar Physics 230, 91 (2005).

[16] X. Tang, W. Fang, Y. Luo, K. Wang and Z. Xia, Acta Optica Sinica 36, 1012004 (2016). (in Chinese)

[17] X. Tang, P. Jia, K. Wang, B. Song, W. Fang and Y. Wang, Optics and Precision Engineering 24, 2370 (2016). (in Chinese)

[18] Q. Fang, Research of the Blackbody Cavity and Nonequivalence of Spatial Cryogenic Radiometer, University of Chinese Academy of Sciences, (2014).

[19] Q. Fang, W. Fang, Z. Yang, B. Yu and H. Hu, Metrologia 49, 572 (2012).

[20] X. Chen, W. Fang, Y. Wang, Z. Yang and X. Quan, Acta Optica Sinica 35, 0912003 (2015). (in Chinese)

[21] J. Fedchak, A. Carter and R. Datla, Metrologia 43, S41 (2006).

[22] JCG Metrology, Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement, (2008).

[23] W. Finsterle, P. Blattner, S. Moebus, I. Ruedi, C. Wehrli, M. White and W. Schmutz, Metrologia 45, 377 (2008).

[24] W. Finsterle, WMO International Pyrheliometer Comparison IPC-XFinal Report, (2011).

TANG Xiao, FANG Wei, WANG Yu-peng, YANG Dong-jun, YI Xiao-long. Time constant optimization of solar irradiance absolute radiometer[J]. 光电子快报(英文版), 2017, 13(3): 179.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!