光子学报, 2018, 47 (7): 0723003, 网络出版: 2018-09-16   

方环结构的宽频可调超材料滤波器

Broadband Tunable Filter Based on Square Loop Metamaterial
赵亚娟 1,2,*周必成 1,2张晗 1,2张婷 1,2李宝毅 1,2王东红 1,2
作者单位
1 中国电子科技集团公司第三十三研究所, 太原 030006
2 电磁防护材料及技术山西省重点实验室, 太原 030006
摘要
采用微控制电路加载技术控制超材料的等效介电常数和等效磁导率在不同时间的空间分布形式, 实现空间滤波器中心频率的可调.设计了一种方环缝隙结构超材料滤波器, 单元结构尺寸为18.5 mm×18.5 mm, 通过在单元结构上加载变容二极管实现X波段内的连续可调.当变容二极管电容值从0.15 pF增大到0.70 pF时, 仿真结果表明滤波器的中心频率从11.8 GHz逐渐减小到10.5 GHz, 工作带宽为16.3% (10.2~12.0 GHz), 通带内的回波损耗最小值为22 dB, 插入损耗最大值为0.6 dB.测试结果表明滤波器的中心频率从11.7 GHz逐渐减小到10.3 GHz, 工作带宽为17.2% (10.1~12.0 GHz), 且通带内的回波损耗最小值为25 dB, 插入损耗最大值为0.5 dB.
Abstract
The loading technology of microcontroller circuit was used to change the spatial distribution of relative permittivity and relative permeability in different time, the metamaterials spatial filter can be tuned in frequency. A square loop metamaterial filter was designed with unit structure size of 18.5 mm×18.5 mm, which can be continuously tunable in the X band by loading varactor diode on the unit structure. When the varactor diode increases from 0.15 pF to 0.70 pF, the simulation results show that the center frequency of the filter is decreased from 11.8 GHz to 10.5 GHz, the bandwidth is 16.3% (10.2~12.0 GHz), and the return loss minimum is 22 dB, the insertion loss maximum is 0.6 dB. The measured results show that the center frequency of the filter is decreased from 11.7 GHz to 10.3 GHz, the bandwidth is 17.2% (10.1~12.0 GHz), and the return loss minimum is 25 dB, the insertion loss maximum is 0.5 dB.
参考文献

[1] 赵亚娟, 王东红, 张泽奎, 等. 基于超材料结构的小型化可调滤波器[J].光子学报, 2017, 46(6): 0616005.

    ZHAO Ya-juan, WANG Dong-hong, ZHANG Ze-kui, et al. A compact tunable filter based on metamaterial structure[J]. Acta Photonica Sinica, 2017, 46(6): 0616005.

[2] 李玉龙, 宋树祥, 岑明灿, 等. 一个紧凑型超宽带微带带通滤波器[J]. 电子元件与材料, 2016,1(35): 57-60.

    LI Yu-long, SONG Shu-xiang, CEN Ming-can, et al. Compact ultra-wideband microstrip bandpass filter designs[J]. Electronic Components and Materials, 2016, 1(35): 57-60.

[3] GORUR A K, KARPUZ C, OZEK A. Metamaterial based dual-band bandpass filter design for WLAN/WiMAX applications[J]. Microwave and Optical Technology Letters, 2014, 56(10): 2211-2214.

[4] 冯梦璐, 杨曙辉, 陈迎潮. 基于缺陷地抑制高阶谐波的带通滤波器设计[J]. 电子器件, 2016,1(39): 67-71.

    FENG Meng-lu, YANG Shu-hui, CHEN Ying-chao. Design of a harmonic-suppressed bandpass filter using a defected ground structure[J]. Electron Devices, 2016, 1(39): 67-71.

[5] 张友俊, 林君.基于折叠双模谐振器结构的微带带通滤波器[J]. 压电与声光, 2015,6(37): 1057- 1060.

    ZHANG You-jun, LIN Jun. Microstrip bandpass filter based on folded dual-mode resonator structure[J]. Piezoelectrics and Acoustooptics, 2015, 6(37): 1057-1060.

[6] 刘海文, 朱爽爽, 文品, 等. 基于发卡式开口谐振环的柔性双频带超材料[J]. 物理学报, 2015, 3(64): 038101.

    LIU Hai-wen, ZHU Shuang-shuang, WEN Pin, et al. A flexible dual-band metamaterial based on hairpin split-ring resonators[J]. Acta Physics Sinica, 2015, 3(64): 038101.

[7] 赵亚娟, 周必成, 张泽奎, 等. 基于开口环结构的小型化可调超材料滤波器[J]. 光电子快报, 2017, 13(2): 120-122.

    ZHAO Ya-juan, ZHOU Bi-cheng, ZHANG Ze-kui, et al. A compact tunable metamaterial filter based on split-ring resonators[J]. Optoelectronics Letters, 2017, 13(2): 120-122.

[8] GUO J, WU K, XIAO Y C, et al. Study onultrawide tunable-range single-passband microwave photonic filter[J]. Journal of Optoelectronics·Laser, 2014, 25(7): 1274-1278.

[9] CHAUDHARY G, JUNG Y, LIM J. Dual-band bandpass filter with independently tunable center frequencies and bandwidths[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 107-116.

[10] YOU Z G, LIN X Q, DENG L K. Study and design of electrically tunable filter[J]. Communications Technology, 2014, 44(1): 162-167.

[11] CHEN K, SONG C B, YANG J S. Design of tunablebandpass filter based on interdigital structure[J]. Microelectronics, 2012, 42(3): 327-330.

[12] 赵亚娟, 江波, 李宝毅, 等. 紧凑型超材料结构的三频段带通滤波器[J]. 光电子快报, 2016, 12(4): 273-275.

    ZHAO Ya-juan, JIANG Bo, LI Bao-yi, et al. Compact triple-band bandpass filter based on metamaterial[J]. Optoelectronics Letters, 2016, 12(4): 273-275.

[13] SAFARI M, SHAFAI C, SHAFAI L. X-band tunable frequency selective surface using MEMS capacitive loads[J].IEEE Transactions on Antennas and Propagation, 2015, 63(3): 1014-1021.

[14] 胡亮, 王志刚, 夏雷, 等. X波段可调谐带通滤波器[J].微波学报, 2014, 11(25): 122-126.

    HU Liang, WANG Zhi-gang, XIA Lei, et al. X-band tunable band-pass filter[J]. Journal of Microwaves, 2014, 11(25): 122-126.

[15] 葛栋森,许全,魏明贵,等.基于曲折线型介质超材料的宽带太赫兹四分之一波片[J].红外与激光工程,2017,46(9): 0921002.

    GE Dong-sen, XU Quan, WEI Ming-gui, et al. Broadband terahertz quarter wave plate based on meander-line dielectric metamaterials[J]. Infrared and Laser Engineering, 2017, 46(9): 0921002.

[16] 秦超, 谭宇, 王文君, 等. 一种新型半波长可调滤波器设计[J]. 压电与声光, 2014, 36(3): 366-369.

    QIN Chao, TAN Yu, WANG Wen-jun, et al. Design on a new type of half-wavelength tunable filter[J]. Piezoelectrics and Acoustooptics, 2014, 36(3): 366-369.

[17] ALI K G, CEYHUN K, AHMET O, et al. Metamaterial based dual-band bandpass filter ddsign for wlan/wimax applications[J]. Microwave and Optical Technology Letters, 2014, 10(56): 2211-2214.

[18] LIU H W, LEI J H, ZHAN X, et al. Compact quad-band superconducting metamaterial filter based on split ring resonator[J]. Applied Physics Letters, 2014: 222602.

[19] VAISHALI R, SEEMA A, ANIMESH B. Compact triple-band bandpass filter using spilt ring resonator[J]. Microwave and Optical Technology Letters, 2015, 5(57): 1222-1225.

赵亚娟, 周必成, 张晗, 张婷, 李宝毅, 王东红. 方环结构的宽频可调超材料滤波器[J]. 光子学报, 2018, 47(7): 0723003. ZHAO Ya-juan, ZHOU Bi-cheng, ZHANG Han, ZHANG Ting, LI Bao-yi, WANG Dong-hong. Broadband Tunable Filter Based on Square Loop Metamaterial[J]. ACTA PHOTONICA SINICA, 2018, 47(7): 0723003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!