光子学报, 2019, 48 (4): 0423002, 网络出版: 2019-04-28  

边缘形貌缺陷对条状光学天线响应特性的影响

Influence of Edge Morphology Defect on Response Characteristics of Strip Optical Antenna
作者单位
中国海洋大学 信息科学与工程学院, 山东 青岛 266100
摘要
使用有限时域差分法, 模拟计算了天线边缘的凹凸缺陷对硅基底上的条形天线的响应特性及电场分布的影响.计算结果表明: 两种类型的缺陷都将改变缺陷附近的电场方向和电场强度, 凸起缺陷可以使其附近的电场增强, 而凹陷缺陷则相反, 且缺陷越靠近天线末端, 对电场的影响越强.缺陷大小和位置不同, 对电场增强面积的影响不同.凹陷缺陷位于天线末端时, 随着缺陷的增大, 电场强度增强2倍的区域单调减小, 增强4倍的区域面积单调增加.当缺陷为20 nm时, 电场强度增强2倍的区域面积降低约3%, 增强4倍的区域面积增加约4%.与凹陷缺陷不同凸起缺陷没有简单单调性, 缺陷位置不同, 影响也有所区别, 但是控制缺陷在10 nm以内可以显著降低影响.该结果为光学天线加工的精度要求提供了理论依据.
Abstract
The finite-time difference method is used to simulate the influence of the concave and convex defects on the edge of the antenna on the response characteristics and electric field distribution of the strip antenna on the silicon substrate. The calculation results show that both types of defects change the electric field direction and electric field strength near the defect. The convex defect can enhance the electric field in the vicinity, while the concave defect is opposite, and the closer to the end of the antenna, the stronger the effect of defects. Defects of different positions and sizes have different effects on the area of the electric field enhancement. When the concave-defect is located at the end of the antenna, as the size increases, the area where the electric field strength is increased by 2 times monotonously decreases, and the area where the electric field is enhanced by 4 times monotonously increases. When the defect is 20 nm, the area where the electric field strength is increased by 2 times is reduced by about 3%, and the area where the electric field is enhanced by 4 times is increased by about 4%. Different from the concave defect, the convex defect has no simple monotonicity, and the defect position is different, and the influence is also different. However, controlling defects within 10 nm can significantly reduce the impact. This result provides a theoretical basis for the accuracy requirements of optical antenna processing.
参考文献

[1] NEUBRECH F, HUCK C, WEBER K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 2017, 117(7): 5110-5145.

[2] DARVILL D, CENTENO A, XIE Fang, et al. Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology[J]. Physical Chemistry Chemical Physics, 2013, 15(38): 15709-15762.

[3] VERCRUYSSE D, SONNEFRAUD Y, VERELLEN N, et al. Unidirectional side scattering of light by a single-element nanoantenna.[J]. Nano Letters, 2013, 13(8): 3843-3849.

[4] MILEKHIN A G, CHERKASOVA O, KUZNETSOV S A, et al. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules[J]. Beilstein Journal of Nanotechnology, 2017, 8(1): 975-981.

[5] BROWN L V, YANG Xiao, ZHAO Ke, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption(seira).[J]. Nano Letters, 2015, 15(2): 1272-1280.

[6] BISWAS R, PAUL D. LSPR enhanced gasoline sensing with a U-bent optical fiber[J].Journal of Physics D, 2016, 49(30): 305104.

[7] CROZIER K B, SUNDARAMURTHY A, KINO G S,et al. Optical antennas: resonators for local field enhancement[J]. Journal of Applied Physics, 2003, 94(7): 4632-4642.

[8] VIARBITSKAYA S, DEMICHEL O, CLUZEL B,et al. Delocalization of nonlinear optical responses in plasmonic nanoantennas.[J]. Physical Review Letters, 2015, 115(19): 197401.

[9] YU N, GENEVET P, AIETA F,et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423.

[10] LEVESQUE Q, MAKHSIYAN M, BOUCHON P,et al. Plasmonic planar antenna for wideband and efficient linear polarization conversion[J]. Applied Physics Letters, 2014, 104(11): 111105.

[11] ZIMMERMAN D T, BORST B D, CARRICK C J, et al. Optical properties of electrically connected plasmonic nanoantenna dimer arrays[J]. Journal of Applied Physics, 2018, 123(6): 063101.

[12] LEE B, PARK J, HAN G H,et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS 2 Integrated with plasmonic nanoantenna array[J]. Nano Letters, 2015, 15(5): 3646-3653.

[13] LPEZTEJEIRA F, PANIAGUADOMNGUEZ R, RODRGUEZOLIVEROS R,et al. Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna[J]. New Journal of Physics, 2012, 14(1): 023035.

[14] KANG T, CHOI W, YOON I,et al. Rainbow radiating single-crystal Ag nanowire nanoantenna[J]. Nano Letters, 2012, 12(5): 2331-2336.

[15] CHEN Ji, HE Ke-bo, ZHANG Zhao-yu. Triangle defects in bowtie nanoantennas[J]. Applied Physics A: Materials Science & Processing, 2013, 112(3): 591-596.

[16] AKSU S, CETIN A E, ADATO R,et al. Plasmonically enhanced vibrational biospectroscopy using low‐cost infrared antenna arrays by nanostencil lithography[J]. Advanced Optical Materials, 2013, 1(11): 798-803.

[17] NOVOTNY L, HULST N V. Antennas for light[J]. Nature Photonics, 2011, 5(2): 83-91.

[18] HUANG J S, CALLEGARI V, GEISLER P, et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry[J]. Nature Communications, 2010, 1(9): 150-178.

张骞, 李春, 元光. 边缘形貌缺陷对条状光学天线响应特性的影响[J]. 光子学报, 2019, 48(4): 0423002. ZHANG Qian, LI Chun, YUAN Guang. Influence of Edge Morphology Defect on Response Characteristics of Strip Optical Antenna[J]. ACTA PHOTONICA SINICA, 2019, 48(4): 0423002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!