强激光与粒子束, 2016, 28 (3): 033022, 网络出版: 2016-03-28  

高功率微波单一气体及混合气体击穿特性

Single and mixed gas breakdown characteristics induced by high power microwave
作者单位
解放军信息工程大学 信息系统工程学院, 郑州 450001
摘要
综合考虑高功率微波对电子的加速过程以及电子与气体分子的碰撞过程,建立了单一气体与混合气体击穿过程的蒙特卡罗仿真模型,编写了三维蒙特卡罗仿真程序(3D-MCC)。针对单一气体Ar和N2以及混合气体N2/O2展开研究,仿真了气体雪崩击穿电子云形成过程,对比分析了不同气体电子能量分布函数随压强的变化规律。发现了Ar击穿特性受电子能量分布函数影响较大,而N2击穿特性受电子能量分布函数影响较小。通过分析平均电子能量以及电子密度随时间的变化过程,得到了Ar和N2击穿时间,并通过与流体模型计算得到的击穿时间比对分析验证了3D-MCC模型的正确性。在真空腔体内开展了S波段高功率微波大气击穿实验,测量得到了场强为6.38 kV/cm时不同压强下的大气击穿时间。通过在辐射源与真空腔体之间增加聚焦透镜,大大减小了壁效应的影响,并且采用模型仿真得到的大气击穿时间与实验结果吻合较好。
Abstract
A Monte Carlo model is proposed to simulate the process of HPM single and mixed gas breakdowns, and a three-dimensional Monte Carlo code (3D-MCC) is compiled by analyzing the collision process between electrons and background gases. Aiming at Ar, N2 and N2/O2 mixture (air), the electron cloud formation process and the electron energy distribution function (EEDF) can be obtained by simulating the process of gas breakdown using 3D-MCC. The gas breakdown time, derived by analyzing the variation trend of the EEDF and the electron density along with time, has an intense dependence on the EEDF for Ar, but not for N2. The correctness of this model is verified by comparing with the fluid model. An experimental system allowing the air breakdown to be triggered in vacuum by a focused HPM is established. The air breakdown time is measured under different pressures at S-band when the electric field is 6.38 kV/cm. The simulation results are consistent with the experimental data.
参考文献

[1] Ford P J, Beeson S R, Krompholz H G, et al. A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures[J]. Physics of Plasmas, 2012, 19:073503.

[2] Thumm M K A. Recent developments on high-power gyrotrons-Introduction to this special issue[J]. Journal of Infrared, Millimeter and Terahertz Waves, 2011, 32(3):241-252.

[3] Zhang Jun, Jin Zhenxing, Yang Jiahua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands[J]. IEEE Trans Plasma Science, 2011, 39(6):1438-1445.

[4] Hidaka Y, Choi E M, Mastovsky I, et al. Imaging of atmospheric air breakdown caused by a high-power 110-GHz pulsed Gaussian beam[J]. IEEE Trans Plasma Science, 2008, 36(4):936-937.

[5] 周东方,张德伟,王利萍,等.基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究[J].物理学报, 2013, 62:014207.(Zhou Dongfang, Zhang Deiwei, Wang Liping, et al. Theoretical and experimental investigation of air breakdown on single high power microwave based on the mixed-atmosphere propagation model. Acta Physica Sinica, 2013, 62:014207)

[6] Liu Guozhi, Liu Jingyue, Huang Wenhua, et al. A study of high power microwave air breakdown[J]. Chinese Physics, 2009, 9(10):757-355.

[7] MacDonald A D. Microwave breakdown in gases[M]. New York: John Wiley & Son, 1966.

[8] 赵刚,闫二艳,陈朝阳,等.高功率微波大气击穿阈值分析及实验[J].强激光与粒子束, 2013, 25(s0):111-114.(Zhao Gang, Yan Eryan, Chen Chaoyang, et al. Analysis and experimental study on threshold of air breakdown by high power microwave. High Power Laser and Particle Beams, 2013, 25(s0):111-114)

[9] 朱连燕,廖成,杨丹,等.110 GHz太赫兹波大气击穿阈值及最大传输能量密度[J].强激光与粒子束, 2013, 25(6):1435-1439.(Zhu Lianyan, Liao Cheng, Yang Dan, et al. Air breakdown threshold and maximum transmitted energy density of 110 GHz terahertz waves. High Power Laser and Particle Beams, 2013, 25(6):1435-1439)

[10] Sang K N, Verboncoeur J P. Global model for high power microwave breakdown at high pressure in air[J]. Computer Physics Communications, 2009, 180(4):628-635.

[11] Beeson S R, Dickens J C, Neuber A A. Global model for total delay time distribution of high-power microwave surface flashover[J]. IEEE Trans Plasma Science, 2014, 42(11):3450-3457.

[12] 赵鹏程,廖成,杨丹,等.基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究[J].物理学报, 2013, 62:055101.(Zhao Pengcheng, Liao Cheng, Yang Dan, et al. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62:055101)

[13] Chang Chao, Verboncoeur J, Guo M N, et al. Ultrafast high-power microwave window breakdown: nonlinear and postpulse effects[J]. Physical Review E, 2014, 90:063107.

[14] Zhu Meng, Chang Chao, Yan Kai, et al. Theory of nanosecond high-power microwave breakdown on the atmosphere side of the dielectric window[J]. IEEE Trans Plasma Science, 2015, 43:1670-1675.

[15] Sang K N, Verboncoeur J P. Effect of electron energy distribution function on the global model for high power microwave breakdown at high pressures[C]//IEEE International Vacuum Electronics Conference. 2008:209-210.

[16] Qiu Feng, Yan Eryan, Meng Fanbao, et al. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure[J]. Physics of Plasmas, 2015, 22:073506.

[17] Hagelaar G J M. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science & Technology, 2005, 14(4):722-733.

[18] Bray database[DB/OL]http://fr.lxcat.net/data/set_type.php.

[19] Vahedi V, Surendra M. A Monte Carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges[J]. Computer Physics Communications, 1995, 87(1/2):179-198.

[20] Kim H C, Verboncoeur J P. Transition of window breakdown from vacuum multipactor discharge to rf plasma[J]. Physics of Plasmas, 2006, 13:123506.

魏进进, 周东方, 余道杰, 胡涛, 雷雪, 胡俊杰, 侯德亭. 高功率微波单一气体及混合气体击穿特性[J]. 强激光与粒子束, 2016, 28(3): 033022. Wei Jinjin, Zhou Dongfang, Yu Daojie, Hu Tao, Lei Xue, Hu Junjie, Hou Deting. Single and mixed gas breakdown characteristics induced by high power microwave[J]. High Power Laser and Particle Beams, 2016, 28(3): 033022.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!