Photonics Research, 2020, 8 (7): 07001197, Published Online: Jun. 29, 2020  

Low-loss hybrid plasmonic TM-pass polarizer using polarization-dependent mode conversion Download: 577次

Ruixuan Chen 1,2,3Bowen Bai 1,2,3Zhiping Zhou 1,2,3,*
Author Affiliations
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2 Peking University Shenzhen Research Institute, Shenzhen 518057, China
3 Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Copy Citation Text

Ruixuan Chen, Bowen Bai, Zhiping Zhou. Low-loss hybrid plasmonic TM-pass polarizer using polarization-dependent mode conversion[J]. Photonics Research, 2020, 8(7): 07001197.

References

[1] Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, P. Sun. Silicon photonics—a converging point of microelectronics and optoelectronics. Micro/Nano Electron. Intell. Manuf., 2019, 1: 4-15.

[2] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. I. Itabashi. Silicon photonic circuit with polarization diversity. Opt. Express, 2008, 16: 4872-4880.

[3] X. Guan, H. Wu, Y. Shi, D. Dai. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Opt. Lett., 2014, 39: 259-262.

[4] B. Bai, Q. Deng, Z. Zhou. Plasmonic-assisted polarization beam splitter based on bent directional coupling. IEEE Photon. Technol. Lett., 2017, 29: 599-602.

[5] B. Bai, L. Liu, Z. Zhou. Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling. Opt. Lett., 2017, 42: 4752-4755.

[6] L. Liu, Y. Ding, K. Yvind, J. M. Hvam. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Opt. Express, 2011, 19: 12646-12651.

[7] L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, Z. Zhou. On-chip plasmonic waveguide optical waveplate. Sci. Rep., 2015, 5: 15794.

[8] D. Dai, H. Wu. Realization of a compact polarization splitter-rotator on silicon. Opt. Lett., 2016, 41: 2346-2349.

[9] L. Wu, J. Guo, H. Xu, X. Dai, Y. Xiang. Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes. Photon. Res., 2016, 4: 262-266.

[10] T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith. Polarization-transparent microphotonic devices in the strong confinement limit. Nat. Photonics, 2007, 1: 57-60.

[11] D. Dai, Z. Wang, N. Julian, J. E. Bowers. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt. Express, 2010, 18: 27404-27415.

[12] Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, W. N. Ye. High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering. IEEE Photon. J., 2015, 7: 7802107.

[13] H. Xu, Y. Shi. On-chip silicon TE-pass polarizer based on asymmetrical directional couplers. IEEE Photon. Technol. Lett., 2017, 29: 861-864.

[14] H. Zafar, P. Moreira, A. M. Taha, B. Paredes, M. S. Dahlem, A. Khilo. Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides. Opt. Express, 2018, 26: 31850-31860.

[15] B. Ni, J. Xiao. Subwavelength-grating-based compact and broadband TE-pass polarizer for slot waveguides on a SOI platform. J. Opt. Soc. Am. B, 2019, 36: 2126-2133.

[16] D. W. Kim, M. H. Lee, Y. Kim, K. H. Kim. Ultracompact transverse magnetic mode-pass filter based on one-dimensional photonic crystals with subwavelength structures. Opt. Express, 2016, 24: 21560-21565.

[17] C. Prakash, M. Sen. Optimization of silicon-photonic crystal (PhC) waveguide for a compact and high extinction ratio tm-pass polarization filter. J. Appl. Phys., 2020, 127: 023101.

[18] X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide. Opt. Lett., 2014, 39: 4514-4517.

[19] S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, S. S. A. Obayya. Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform. IEEE Photon. Technol. Lett., 2014, 26: 1633-1636.

[20] Q. Wang, S. Ho. Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design. IEEE Photon. J., 2010, 2: 49-56.

[21] S. I. Azzam, S. S. A. Obayya. Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform. Opt. Lett., 2015, 40: 1061-1064.

[22] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 2010, 4: 83-91.

[23] Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, G.-Q. Lo. CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Opt. Express, 2013, 21: 12790-12796.

[24] X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, M. Mojahedi. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Opt. Lett., 2012, 37: 4814-4816.

[25] M. G. Saber, N. Abadía, D. V. Plant. CMOS compatible all-silicon tm pass polarizer based on highly doped silicon waveguide. Opt. Express, 2018, 26: 20878-20887.

[26] B. Bai, F. Yang, Z. Zhou. Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating. Photon. Res., 2019, 7: 289-293.

[27] N. Abadía, M. G. Saber, F. Bello, A. Samani, E. El-Fiky, Y. Wang, J. F. Donegan, D. V. Plant. CMOS-compatible multi-band plasmonic TE-pass polarizer. Opt. Express, 2018, 26: 30292-30304.

[28] X. Sun, M. Mojahedi, J. S. Aitchison. Hybrid plasmonic waveguide-based ultra-low insertion loss transverse electric-pass polarizer. Opt. Lett., 2016, 41: 4020-4023.

[29] B. Bai, L. Liu, R. Chen, Z. Zhou. Low loss, compact TM-pass polarizer based on hybrid plasmonic grating. IEEE Photon. Technol. Lett., 2017, 29: 607-610.

[30] Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, Y. Zhang. Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide. IEEE Photon. Technol. Lett., 2015, 27: 201-204.

[31] L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol., 1995, 13: 615-627.

[32] K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, D. J. Norris. Plasmonic films can easily be better: rules and recipes. ACS Photon., 2015, 2: 326-333.

Ruixuan Chen, Bowen Bai, Zhiping Zhou. Low-loss hybrid plasmonic TM-pass polarizer using polarization-dependent mode conversion[J]. Photonics Research, 2020, 8(7): 07001197.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!