红外与激光工程, 2017, 46 (6): 0604001, 网络出版: 2017-07-10  

电弧风洞模拟ZnS红外窗口表面温度响应

Simulation of ZnS infared window surface temperature response by arc-heated wind tunnel
作者单位
中国空气动力研究与发展中心超高速空气动力研究所, 四川 绵阳 621000
摘要
为了开展红外窗口地面试验研究, 需用电弧风洞准确模拟出红外窗口表面温度响应过程, ZnS具有红外透明性, 地面流场模拟试验中, 在不影响其流场状态情况下较难获得其表面温度, 因此无法模拟出红外窗口的温度响应过程。介绍了在电弧风洞上模拟ZnS红外窗口表面温度响应的方法, 首先使用与ZnS相似热物性参数的2Cr13获得表面温度, 接着模拟出红外窗口流场状态及温度响应过程, 最后通过电弧风洞流场试验进行验证。研究结果表明: 在150~250℃温度区间, 2Cr13与ZnS在电弧风洞流场试验中的温度响应一致。使用与ZnS相似热物性参数的2Cr13测试ZnS表面温度实现电弧风洞模拟ZnS表面温度响应具有一定可行性。
Abstract
In order to develop related researches of infared window, it is necessary to simulate surface temperature response of infrared window exactly. As the property of infrared transparence, it is hard to obtain the surface temperature of ZnS without disturbing the flow field, thus it is not possible to simulate the temperature response process of infrared window. A method was introduced to simulate the surface temperature response of ZnS infared window by arc-heated wind tunnel. First, the surface temperature of ZnS was measured by using 2Cr13 which had similar thermophysical properties with ZnS. Then, the temperature response process of infrared window was simulated. Finally, several tests were taken to identify this method by arc-heated wind tunnel. The result shows that 2Cr13 and ZnS have the same temperature response properties when tested in arc-heated wind tunnel flow field at temperatures between 150-250 ℃ . It is reliable to measure the surface temperature of ZnS by using 2Cr13 which has similar thermophysical properties with ZnS in arc-heated wind tunnel simulation test.
参考文献

[1] Bevilacqua G, Martinelli L, Vogel E E, et al. Jahn-Teller effect and the luminescence spectra of V2+ in ZnS and ZnSe[J]. Phys Rev B, 2002, 66(15): 155338.

[2] Choi Y I, Lee S, Kim S K. Fabrication of ZnO, ZnS, Ag-ZnS, and Au-ZnS microspheres for photocatalytic activities, CO oxidation and 2-hydroxyterephthalic acid synthesis[J]. Journal of Alloys and Compounds, 2016, 675: 46-56.

[3] Fang X S, Zhang L. One-dimensional(1D) ZnS nanomaterials and nanostructures[J]. Journal Material Science and Technolog, 2006, 22(6): 721-736.

[4] Mendil R, Ben Ayadi Z, Djessas K. Effect of solvent medium on the structural, morphological and optical properties of ZnS nanoparticles synthesized by solvothermal route[J]. Journal of Alloys and Compounds, 2016, 678: 87-92.

[5] Vlasenko N A. On nature of centers responsible for inherent memory in ZnS: Mn thin film electrol uminescent devices[J]. Journal of Crystal Growth, 2000, 216(1): 249-255.

[6] Trung D Q, Thang P T, Hung N D. Structural evolution and optical properties of oxidized ZnS microrods[J]. Journal of Alloys and Compounds, 2016, 676: 150-155.

[7] Wang R R, Liang H F, Hong J Q. Hydrothermal synthesis of cobalt-doped ZnS for efficient photodegradation of methylene blue[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325: 62-67.

[8] Manzoor K, Aditya V. Enhanced electroluminescence properties of doped ZnS nanorods formed by the self-assembly of colloidal nanocrystals[J]. Solid State Communications, 2005, 135(1-2): 16-20.

[9] Clark S J, Segall M D, Pickard C J. First principles methods using CASTEP[J]. Zeitschrift Fuer Kristallographie, 2005, 220(5-6): 567-570.

[10] Matsui M, Ikemoto T, Takayanagi H. Evaluation of plume characteristics of arc-heaters with various oxygen injection systems[J]. Vacuum, 2006, 80: 11-12.

[11] 王亚辉, 王强, 张伯川, 等. 红外窗口气动热辐射效应评估方法[J]. 红外与激光工程, 2016, 45(2): 0204001.

    Wang Yahui, Wang Qiang, Zhang Baichuan, et al. Evaluation method for aero-thermo-radiation effect of IR window[J]. Infrared and Laser Engineering, 2016, 45(2): 0204001. (in Chinese)

[12] Hsiung G Y, Hsueh H P, Wu L H. Vacuum systems for the TPS accelerator[J]. Vacuum, 2015, 121: 245-249.

[13] Jayaseelan D D, Xin Y, Vandeperre L. Development of multi-layered thermal protection system (TPS) for aerospace applications[J]. Composites Part B: Engineering, 2015, 79: 392-405.

[14] Chen Y Y. Luminescent mechanisms of ZnS: Cu and ZnS: Cu: Al phosphors[J]. Thin Solid Films, 2001, 329(1): 50.

[15] Khaparde R, Acharya S. Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 163: 49-57.

[16] 武伟, 陈桂明, 赵娜, 等. 激光在高速钢表面加工沟槽表面织构的实验研究[J]. 红外与激光工程, 2016, 45(2): 0206008.

    Wu Wei, Chen Guiming, Zhao Na, et al. Experimental study on the groove surface texture processed by laser on the surface of high-speed steel[J]. Infrared and Laser Engineering, 2016, 45(2): 0206008. (in Chinese)

[17] 夏伶勤. 430不锈钢表面氧化皮组成与界面结合强度的研究[D]. 太原: 太原理工大学, 2010.

    Xia Lingqin. Composition of oxide scale on 430 stainless steel surface and interface bonding strength[D]. Taiyuan: Taiyuan University of Technology, 2010. (in Chinese)

[18] Zhang Y, Wen D. Effect of RE/Ni (RE=Sm, Gd, Eu) addition on the infrared emission properties of Co-Zn ferrites with high emissivity[J]. Materials Science & Engineering B, 2010, 172(3): 331–335.

[19] 刘仲宇, 张涛, 王平, 等. 红外导引头稳定平台主框架拓朴优化设计[J]. 红外与激光工程, 2016, 45(2): 0218001.

    Liu Zhongyu, Zhang Tao, Wang Ping, et al. Topology optimization design for main frame of infrared seeker′s stabilization platform[J]. Infrared and Laser Engineering, 2016, 45(2): 0218001. (in Chinese)

袁竭, 隆永胜, 赵顺洪, 周玮, 杨斌. 电弧风洞模拟ZnS红外窗口表面温度响应[J]. 红外与激光工程, 2017, 46(6): 0604001. Yuan Jie, Long Yongsheng, Zhao Shunhong, Zhou Wei, Yang Bin. Simulation of ZnS infared window surface temperature response by arc-heated wind tunnel[J]. Infrared and Laser Engineering, 2017, 46(6): 0604001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!