激光与光电子学进展, 2012, 49 (2): 020003, 网络出版: 2011-12-08   

高功率光纤激光器抽运耦合技术的现状和发展 下载: 1079次

Status and Development of Pumping Technology for High Power Fiber Lasers
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
抽运耦合技术是实现高功率光纤激光输出的关键技术之一。对国内外双包层光纤激光器所采用的各种端面抽运耦合技术和侧面抽运耦合技术进行了详细的介绍,并比较了各自的优缺点。分析表明,熔融拉锥光纤束端面抽运和GTWave侧面抽运方式更有利于实现高功率光纤激光输出。
Abstract
Pumping technology is a key factor to realize high power fiber laser. Various end-pumping technologies and side-pumping technologies, which are adopted in double-clad fiber laser at home and abroad, are introduced in detail. The advantages and disadvantages of these technologies are compared. The analysis shows that taper-fused bundle end-pumping and GTWave side-pumping are more propitious to achieve high power fiber laser.
参考文献

[1] 姚建铨, 任广军, 张强 等. 掺镱双包层光纤激光器及其泵浦耦合技术[J]. 激光杂志, 2006, 27(5): 1~4

    Yao Jianquan, Ren Guangjun, Zhang Qiang et al.. Yb doped double clad fiber laser and pump coupling technology[J]. Laser Journal, 2006, 27(5): 1~4

[2] 楼祺洪, 周军, 朱健强 等. 高功率光纤激光器研究进展[J]. 红外与激光工程, 2006, 35(2): 135~138

    Lou Qihong, Zhou Jun, Zhu Jianqiang et al.. Recent progress of high-power fiber lasers[J]. Infrared and Laser Engineering, 2006, 35(2): 135~138

[3] 楼祺洪, 周军, 张海波 等. 大芯径光纤激光器的新进展[J]. 中国激光, 2010, 37(9): 2235~2241

    Lou Qihong, Zhou Jun, Zhang Haibo et al.. Recent progress of large core fiber lasers[J]. Chinese J. Lasers, 2010, 37(9): 2235~2241

[4] 光纤激光时代来临——光纤激光器第三代激光器的代表[OL]. http://www.laserfocusworld.com.cn/DeMT.asp id=152, 2010009-09

[5] E. Snitzer. Optical maser action of Nd3+ in a barium crown glass[J]. Phys. Rev. Lett., 1961, 7(12): 444~446

[6] R. J. Mears, L. Reekie, I. M. Jauncey et al.. Low-noise erbium-doped fibre amplifier operating at 1.54 μm[J]. Electron. Lett., 1987, 23(19): 1026~1028

[7] E. Desurvire, J. R. Simpson, P. C. Becker. High-gain erbium-doped traveling-wave fiber amplifier[J]. Opt. Lett., 1987, 12(11): 888~890

[8] E. Snitzer, H. Po, F. Hakimi et al.. Double-clad, offset core Nd fiber laser[C]. OSA Technical Digest of Optical Fiber Sensors, 1988, 2: PD5

[9] H. M. Pask, J. L. Archambault, D. C. Hanna et al.. Operation of cladding-pumped Yb3+ doped silica fibre lasers in 1 μm region[J]. Electron. Lett., 1994, 30(11): 863~865

[10] Y. Jeong, J. Sahu, D. Payne et al.. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Opt. Express, 2004, 12(25): 6088~6092

[11] V. Fomin, A. Mashkin, M. Abramov et al.. 3 kW Yb fibre lasers with a single-mode output[C]. International Symposium on High-Power Fiber Lasers and Their Applications, 2006

[12] 光纤激光器的输出功率日益提升[OL]. http://www.laserfocusworld.com.cn/DeTC.asp id=25, 2010-07-23

[13] 赵鸿, 周寿桓, 朱辰 等. 大功率光纤激光器输出功率超过1.2 kW[J]. 中国激光, 2006, 33(10): 1359

    Zhao Hong, Zhou Shouhuan, Zhu Chen et al.. High power fiber laser output power exceeds 1.2 kW[J]. Chinese J. Lasers, 2006, 33(10): 1359

[14] 楼祺洪, 何兵, 薛宇豪 等. 1.75 kW国产掺Yb双包层光纤激光器[J]. 中国激光, 2009, 36(5): 1277

    Lou Qihong, He Bing, Xue Yuhao et al.. 1.75 kW fiber laser with homemade Yb-doped double cladding fiber[J]. Chinese J. Lasers, 2009, 36(5): 1277

[15] 李伟, 陈曦, 武子淳 等. 大功率光纤激光合成功率突破3 kW[J]. 强激光与粒子束, 2010, 22(2): 242

    Li Wei, Chen Xi, Wu Zichun et al.. Combining power of high power fiber laser exceeds 3 kW[J]. High Power Laser and Particle Beams, 2010, 22(2): 242

[16] Y. Jeong, J. K. Sahu, R. B. Williams et al.. Ytterbium-doped large-core fibre laser with 272 W output power[J]. Electron. Lett., 2003, 39(13): 977~978

[17] Y. Jeong, J. K. Sahu, D. N. Payne et al.. Ytterbium-doped large-core fibre laser with 610 W of near diffraction-limited output power[J]. Electron. Lett., 2004, 40(24): 1527~1528

[18] Y. Jeong, J. K. Sahu, D. N. Payne et al.. Ytterbium-doped large-core fiber laser with 1 kW continuous-wave output power[J]. Electron. Lett., 2004, 40(8): 470~472

[19] J. Limpert, A. Liem, H. Zellmer. 500 W continuous-wave fibre laser with excellent beam quality[J]. Electron. Lett., 2003, 39(8): 645~647

[20] D. Jaque, J. C. Lagomacini, C. Jacinto et al.. Continuous-wave diode-pumped Ybglass laser with near 90% slope efficiency[J]. Appl. Phys. Lett., 2006, 89(12): 121101

[21] Y. Jeong, A. J. Boyland, J. K. Sahu et al.. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. J. Opt. Soc. Korea, 2009, 13(4): 416~422

[22] A. S. Kurkov, V. I. Karpov, A. Yu Laptev et al.. Highly efficient cladding-pumped fibre laser based on an ytterbium-doped optical fibre and a fibre Bragg grating[J]. Quantum Electron., 1999, 29(6): 516~517

[23] Réal Vallée, Erik Bélanger, Bernard Déry et al.. Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings[J]. J. Lightwave Technol., 2006, 24(12): 5039~5043

[24] A. S. Kurkov, D. A. Grukh, O. I. Medvedkov et al.. Ytterbium-doped fibre laser with a Bragg grating reflector written in a multimode fibre[J]. Quantum Electron., 2005, 35(4): 339~340

[25] Yan Feng, Luke R. Taylor, Domenico Bonaccini Calia. 150 W highly-efficient Raman fiber laser[J]. Opt. Express, 2009, 17(26): 23678~23683

[26] D. J. DiGiovanni. Tapered Fiber Bundles for Coupling Light Into and Out of Cladding Pumped Fiber Devices[P]. US Patent 5,864,644, 1999

[27] B. G. Fidric. Optical Couplers for Multimode Fibers[P]. US Patent 6,434,302 B1, 2002

[28] A. Kosterin, V. Temyanko, M. Fallahi et al.. Tapered fiber bundles for combining high-power diode lasers[J]. Appl. Opt., 2004, 43(19): 3893~3900

[29] Y. Shamir, Y. Sintov, M. Shtaif. Beam quality analysis and optimization in an adiabatic low mode tapered fiber beam combiner[J]. J. Opt. Soc. Am. B, 2010, 27(12): 2669~2676

[30] A. Wetter, M. Faucher, M. Lovelady et al.. Tapered fused-bundle splitter capable of 1 kW CW operation[C]. SPIE, 2007, 6453: 645301

[31] F. Mathieu, Benoit Sevigny, Roger Perreault et al.. All-fiber 32×1 pump combiner with high isolation for high power fiber laser[C]. CLEO/QELS, 2008, CMA5

[32] A. Wetter. Optical Fiber Component Package for High Power Dissipation[P]. US Patent 7,373,070 B2, 2008

[33] Marc F. Gonthier, Vachon Garneau. Multimode Fiber Outer Cladding Coupler for Multi-Clad Fibers[P]. US Patent 7,933,479 B2, 2011

[34] Ping Yan, Shupeng Yin, Mali Gong. 175-W continuous-wave master oscillator power amplifier structure ytterbium-doped all-fiber laser[J]. Chin. Opt. Lett., 2008, 6(8): 580~582

[35] P. Yan, M. Gong. 1.1 kW ytterbium monolithic fiber laser with assembled end-pump scheme to couple high brightness single emitters[J]. IEEE Photon. Techol. Lett., 2010, 23(11): 697~699

[36] S. Yin, P. Yan, M. Gong. End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration[J]. Opt. Express, 2008, 16(22): 17864~17869

[37] Hagop Injeyan, Gregory Goodno. High-Power Laser Handbook[M]. New York: McGraw-Hill, 2011. 520~526

[38] F. Gonthier. Optical Coupler Comprising Multimode Fibers and Method of Making the Same[P]. US Patent 2005/0,094,952 A1, 2005

[39] F. Gonthier. Optical Coupler Comprising Multimode Fibers and Method of Making the Same[P]. US Patent 7,046,875 B2, 2006

[40] D. J. Ripin, L. Goldberg. High efficiency side-coupling of light into optical fibres using imbedded V-grooves[J]. Electron. Lett., 1995, 31(25): 2204~2205

[41] L. Goldberg, D. J. Ripin. High-efficiency side-coupling of light into double-cladding fibers using imbedded V-grooves[C]. Optical Fiber Communications 1996, 1996, 91~92

[42] J. P. Koplow, Lew Goldberg, A. V. Dahv et al.. Compact 1-W Yb-doped double-cladding fiber amplifier using V-groove side-pumping[J]. IEEE Photon. Technol. Lett., 1998, 10(6): 793~795

[43] K. J. Snell. Multiple Emitter Side Pumping Method and Apparatus for Fiber Lasers[P]. US Patent 6,801,550 B1, 2004

[44] L. Goldberg, B. Cole, E. Snitzer. V-groove side-pumped 1.5 μm fiber amplifier[J]. Electron. Lett., 1997, 33(25): 2127~2129

[45] Li Cheng, Shen Deyuan, Song Jie et al.. Analysis of high-power double-clad fiber lasers side-pumped by multiple diode-lasers in V-groove configuration[C]. The Pacifice Rim Conference on Lasers and Electro-Optics, 1999, 3: 805~806

[46] J. P. Koplow, S. W. Moore, D. A. Kliner. A new method for side pumping of double-clad fiber sources[J]. IEEE J. Quantum Electron., 2003, 39(4): 529~540

[47] F. Hakimi, H. Hakimi. Side Pumped Optical Amplifiers and Lasers[P]. US Patent 6,370,297 B1, 2002

[48] P. Ou, P. Yan, M. Gong et al.. Studies of pump light leakage out of couplers for multi-coupler side-pumped Yb-doped double-clad fiber lasers[J]. Opt. Commun., 2004, 239(4): 421~428

[49] J. Xu, J. Lu, G. Kumar et al.. A non-fused fiber coupler for side-pumping of double-clad fiber lasers[J]. Opt. Commun., 2003, 220(4): 389~395

[50] Pan Ou, Ping Yan, Mali Gong et al.. Multi-coupler side-pumped Yb-doped double-clad fiber laser[J]. Chin. Opt. Lett., 2004, 2(5): 285~287

[51] Q. Xiao, P. Yan, S. Yin et al.. 100 W ytterbium-doped monolithic fiber laser with fused angle-polished side-pumping configuration[J]. Laser Phys. Lett., 2011, 8(2): 125~129

[52] R. Herda, A. Liem, B. Schnabel et al.. Efficient side-pumping of fibre lasers using binary gold diffraction gratings[J]. Electron. Lett., 2003, 39(3): 276~277

[53] F. Zhang, C. Wang, R. Geng et al.. Novel grating couplers for diode-bars multi-point side-pumping double-clad fiber[J]. Opt. Commun., 2007, 279(2): 346~355

[54] F. Zhang, C. Wang, T. Ning et al.. Asymmetric dual-side-grating coupler for high power side-pumping[J]. Opt. Commun., 2008, 281(10): 2883~2892

[55] F. Zhang, B. Yuan, C. Wang et al.. Side pumping scheme with a dual-sided grating coupler[J]. J. Opt., 2010, 12(1): 015501

[56] A. B. Grudinin, D. N. Payne, P. W. Turner et al.. Multi-Fiber Arrangements for High Power Fiber Lasers and Amplifiers[P]. US Patent 6,826,335 B1, 2004

[57] A. B. Grudinin, D. N. Payne, P. W. Turner et al.. Multi-Fiber Arrangement for High Power Fiber Lasers and Amplifiers[P]. US Patent 7,221,822 B2, 2007

[58] P. Dupriez. Advanced High Power Pulsed Fiber Laser Systems and Their Applications[D]. Southampton: Universty of Southampton, 2007. 18~19

[59] V. P. Gapontsev, V. Fomin, N. Platonov. Powerful Fiber Laser System[P]. US Patent 7,593,435 B2, 2009

[60] V. P.Gapontsev. Powerful Fiber Laser System[P]. US Patent 2009/0,092,157 A1, 2009

[61] V. P. Gapontsev, V. Fomin, N. Platonov. Powerful Fiber Laser System[P]. US Patent 2010/0,002,730 A1, 2010

[62] J. Yoonchan, J. Nilsson, K. Sahu et al.. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 546~551

[63] R. Horley, S. Norman, M. Zervas. Progress and development in fiber laser technology[C]. SPIE, 2007, 6738: 67380K

[64] J. N. Maran, Y. Jeong, S. Yoo et al.. Progress in high-power single frequency master oscillator power amplifier[C]. SPIE, 2008, 7099: 70990X

[65] IPG Tests First 10 kW Singlemode Production Laser [OL]. http://optics.org/article/39511, 2009-06-17

[66] S. Norman, M. Zervas, A. Appleyard et al.. Latest development of high power fiber lasers in SPI[C]. SPIE, 2004, 5335: 229~230

[67] V.Gapontsev, D. Gapontsev, N. Platonov et al.. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness[C]. Conference on Lasers and Electro-Optics Europe, 2005, 508

李杰, 陈子伦, 周航, 郭少锋, 许晓军. 高功率光纤激光器抽运耦合技术的现状和发展[J]. 激光与光电子学进展, 2012, 49(2): 020003. Li Jie, Chen Zilun, Zhou Hang, Guo Shaofeng, Xu Xiaojun. Status and Development of Pumping Technology for High Power Fiber Lasers[J]. Laser & Optoelectronics Progress, 2012, 49(2): 020003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!