半导体光电, 2019, 40 (2): 176, 网络出版: 2019-05-05   

基于磁性光子晶体的宽频带低损耗环行器

Broadband and Lowloss Circulators Based on Magnetic Photonic Crystals
作者单位
南京邮电大学 电子与光学工程学院, 微电子学院, 南京 210046
摘要
设计了一种基于光子晶体的结构紧凑、损耗低、频带宽的三端口三光路光环行器, 该环行器由Y型光子晶体波导及配置在中心位置的磁光材料星形柱构成。通过对结构参数进行优化, 该结构可以分别实现194~196GHz、198.2~199.4GHz和197~197.6GHz三个频段内稳定的顺时针单向环行传输, 隔离度分别大于24、15.21和14.5dB, 插入损耗分别小于0.18、0.11和0.38dB。该环行器结构简单, 特别适用于结构复杂的光子集成系统, 同时可提高光路的抗干扰性和稳定性等。
Abstract
Designed is a threeport and threeopticalpath optical circulator with compact structure, low loss and wide broadband. The circulator is composed of a Yshaped photonic crystal waveguide and a star column of magnetooptical material arranged at the center of the waveguide. By optimizing the structure parameters, the structure can realize stable unidirectional circular transmission in a wide frequency range of 194~196GHz, 198.2~199.4GHz and 197~197.6GHz, respectively for the three light paths. The isolation degree is higher than 24, 15.21 and 14.5dB, and the insertion loss is less than 0.18, 0.11 and 0.38dB, respectively. The circulator with simple structure is suitable for photonic integrated system, and it is helpful to improve the antiinterference and stability of the optical path.
参考文献

[1] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 24862489.

[2] Yablonovitch E, Sheng P. Inhibited spontaneous emission in solidstate physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059.

[3] Martinez A J, Kevrekidis P G, Porter M A. Superdiffusive transport and energy localization in disordered granular crystals[J]. Phys. Rev. E., 2016, 93(2): 022902.

[4] Yokoi H. Calculation of nonreciprocal phase shift in magnetooptic waveguides with Ce∶YIG layer[J]. Opt. Mater., 2009, 31(2): 189192.

[5] Jalali A A, Friberg A T. Faraday rotation in a twodimensional photonic crystal with a magnetooptic defect[J]. Opt. Lett., 2005, 30(10): 1213.

[6] Fan S, Wang Z. An ultracompact circulator using twodimensional magnetooptical photonic crystals[J]. J. of The Magnetics Society of Japan, 2007, 30(6/2): 641645.

[7] Wang Z, Fan S. Magnetooptical defects in twodimensional photonic crystals[J]. Appl. Phys. B, 2005, 81(2/3): 369375.

[8] Wang Z, Fan S. Optical circulators in twodimensional magnetooptical photonic crystals[J]. Opt. Lett., 2005, 30(15): 19891991.

[9] Wang Q, Ouyang Z, Zheng Y, et al. Broadband sixport circulator based on magnetoopticalrod ring in photonic crystal[J]. Appl. Phys. B, 2015, 121(3): 385389.

[10] Li Y, Zhao X, Li X, et al. Stress and temperature sensitivity of photonic crystals resonant cavity[J]. Scientific World J., 2013(1): 5262.

[11] Chen B, Tang T, Chen H. Study on a compact flexible photonic crystal waveguide and its bends[J]. Opt. Express, 2009, 17(7): 50335038.

[12] Kuramochi E, Taniyama H, Tanabe T, et al. UltrahighQ onedimensional photonic crystal nanocavities with modulated modegap barriers on SiO2 claddings and on air claddings[J]. Opt. Express, 2010, 18(15): 1585915869.

[13] Wang Y, Zhang D G, Xu S X, et al. Microwavefrequency experiment validation of a novel magnetophotonic crystals circulator[J]. IEEE Photon. J., 2017, PP(99): 11.

[14] Wang Q, Ouyang Z, Tao K, et al. Tshaped optical circulator based on coupled magnetooptical rods and a sidecoupled cavity in a squarelattice photonic crystal[J]. Phys. Lett. A, 2012, 376(4): 646649.

[15] Dmitriev V, Portela G, Martins L. Threeport circulators with low symmetry based on photonic crystals and magnetooptical resonators[J]. Photon. Network Commun., 2016, 31(1): 19.

[16] Wang Y, Zhang D, Xu S, et al. Lowloss Yjunction twodimensional magnetophotonic crystals circulator using a ferrite cylinder[J]. Opt. Commun., 2016, 369: 16.

[17] Li Q, Wang T, Su Y, et al. Coupled mode theory analysis of modesplitting in coupled cavity system[J]. Opt. Express, 2010, 18(8): 8367.

[18] Wang J, Yan H, Dai Z. Circuitbased method for synthesizing of coupledresonators bandpass photonic crystal filters[J]. Opt. Express, 2011, 19(4): 36673676.

[19] Umamaheswari C, Sundar D S, Raja A S. Exploration of photonic crystal circulator based on gyromagnetic properties and scaling of ferrite materials[J]. Opt. Commun., 2017, 382: 186195.

[20] Fan F, Chang S J, Niu C, et al. Magnetically tunable siliconferrite photonic crystals for terahertz circulator[J]. Opt. Commun., 2012, 285(18): 37633769.

[21] Sebastian M T, Jantunen H. Low loss dielectric materials for LTCC applications: a review[J]. Metallurgical Rev., 2013, 53(2): 5790.

[22] Reiskarimian N, Krishnaswamy H. Magneticfree nonreciprocity based on staggered commutation[J]. Nature Commun., 2016, 7: 11217.

[23] Wang Q, Ouyang Z, Liu Q. Multiport photonic crystal circulators created by cascading magnetooptical cavities[J]. J. of The Opt. Society of America B, 2011, 28(4): 703708.

梁吴艳, 陈德媛, 谷云斌, 夏雨, 陈兵. 基于磁性光子晶体的宽频带低损耗环行器[J]. 半导体光电, 2019, 40(2): 176. LIANG Wuyan, CHEN Deyuan, GU Yunbin, XIA Yu, CHEN Bing. Broadband and Lowloss Circulators Based on Magnetic Photonic Crystals[J]. Semiconductor Optoelectronics, 2019, 40(2): 176.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!