激光与光电子学进展, 2020, 57 (23): 230002, 网络出版: 2020-12-08   

高灵敏度微型光学原子磁力仪研究进展 下载: 2090次

Research Progress on High Sensitivity and Miniature Optical-Atomic Magnetometer
作者单位
电子科技大学光电科学与工程学院电子薄膜与集成器件国家重点实验室, 四川 成都 610054
引用该论文

吴梓楠, 赵正钦, 温钟平, 覃添, 欧中华, 周晓军, 刘永, 岳慧敏. 高灵敏度微型光学原子磁力仪研究进展[J]. 激光与光电子学进展, 2020, 57(23): 230002.

Zinan Wu, zhengqin Zhao, Zhongping Wen, Tian Qin, Zhonghua Ou, Xiaojun Zhou, Yong Liu, Huimin Yue. Research Progress on High Sensitivity and Miniature Optical-Atomic Magnetometer[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230002.

参考文献

[1] 黄兴. 天然磁石勺“司南”实证研究[J]. 自然科学史研究, 2017, 36(3): 361-386.

    Huang X. Empirical research on the loadstone spoon “Si Nan” in ancient China[J]. Studies in the History of Natural Sciences, 2017, 36(3): 361-386.

[2] 刘腾. 航空反潜的现状和发展综述[J]. 中国新通信, 2019, 21(8): 74-77.

    Liu T. A summary of the current situation and development of aviation anti submarine[J]. China New Telecommunications, 2019, 21(8): 74-77.

[3] 董鹏, 孙哲, 邹念洋, 等. 国外磁探潜装备现状及发展趋势[J]. 舰船科学技术, 2018, 40(11): 166-169.

    Dong P, Sun Z, Zou N Y, et al. The situation and development trend of foreign magnetic exploration submarine equipment[J]. Ship Science and Technology, 2018, 40(11): 166-169.

[4] 王光源, 马海洋, 章尧卿. 航空磁探仪探潜目标磁梯度定位方法[J]. 兵工自动化, 2011, 30(1): 32-34, 38.

    Wang G Y, Ma H Y, Zhang Y Q. Magnetic gradient target positioning method of airborne MAD submarine detection[J]. Ordnance Industry Automation, 2011, 30(1): 32-34, 38.

[5] 王晓飞, 孙献平, 赵修超, 等. 超灵敏原子磁力计在生物磁应用中的研究进展[J]. 中国激光, 2018, 45(2): 0207012.

    Wang X F, Sun X P, Zhao X C, et al. Progress in biomagnetic signal measurements with ultra-sensitive atomic magnetometers[J]. Chinese Journal of Lasers, 2018, 45(2): 0207012.

[6] Baranga A BA, HoffmanD, XiaH, et al. An atomic magnetometer for brain activity imaging[C]∥14th IEEE-NPSS Real Time Conference, 2005, June 4-10, 2005, Stockholm, Sweden.New York: IEEE Press, 2005: 417- 418.

[7] Liu G, Li X, Sun X, et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 2013, 237: 158-163.

[8] 吴水根, 谭勇华, 周建平. 铯光泵磁力仪(G880)在海洋工程勘探方面的应用[J]. 海洋科学, 2006, 30(5): 5-9.

    Wu S G, Tan Y H, Zhou J P. Application of G-880 cesium optical-pump marine magnetometer to marine engineering detection[J]. Marine Sciences, 2006, 30(5): 5-9.

[9] Kuroda M, Yamanaka S, Isobe Y. Detection of plastic deformation in low carbon steel by SQUID magnetometer using statistical techniques[J]. NDT & E International, 2005, 38(1): 53-57.

[10] Maire P L, Bertrand L, Munschy M, et al. Aerial magnetic mapping with an unmanned aerial vehicle and a fluxgate magnetometer: a new method for rapid mapping and upscaling from the field to regional scale[J]. Geophysical Prospecting, 2020, 68(7): 2307-2319.

[11] 丁鸿佳, 隋厚堂. 磁通门磁力仪和探头研制的最新进展[J]. 地球物理学进展, 2004, 19(4): 743-745.

    Ding H J, Sui H T. The recent progress of the Fluxgate Magnetometer and sensor[J]. Progress in Geophysics, 2004, 19(4): 743-745.

[12] 张昌达. 量子磁力仪研究和开发近况[J]. 物探与化探, 2005, 29(4): 283-287.

    Zhang C D. Recent advances in the research and development of quantum magnetometers[J]. Geophysical and Geochemical Exploration, 2005, 29(4): 283-287.

[13] 张昌达, 董浩斌. 量子磁力仪评说[J]. 工程地球物理学报, 2004, 1(6): 499-507.

    Zhang C D, Dong H B. A review of quantum magnetometers[J]. Chinese Journal of Engineering Geophysics, 2004, 1(6): 499-507.

[14] Yariv A, Winsor H V. Proposal for detection of magnetic fields through magnetostrictive perturbation of optical fibers[J]. Optics Letters, 1980, 5(3): 87-89.

[15] 沈涛, 孙滨超, 冯月. 马赫-曾德尔干涉集成化的全光纤磁场与温度传感器[J]. 光学精密工程, 2018, 26(6): 1338-1345.

    Shen T, Sun B C, Feng Y. Mach-Zehneder interference all-fiber sensor for measurement of magnetic field and temperature[J]. Optics and Precision Engineering, 2018, 26(6): 1338-1345.

[16] Kleiner R, Koelle D, Ludwig F, et al. Superconducting quantum interference devices: State of the art and applications[J]. Proceedings of the IEEE, 2004, 92(10): 1534-1548.

[17] Crété D, Sène A, Labbé A, et al. Evaluation of Josephson junction parameter dispersion effects in arrays of HTS SQUIDs[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(7): 1-6.

[18] Hong T, Wang H, Zhang Y, et al. Flux modulation scheme for direct current SQUID readout revisited[J]. Applied Physics Letters, 2016, 108(6): 062601.

[19] Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.

[20] GroszA, Haji-Sheikh M J, Mukhopadhyay S C. High sensitivity magnetometers[M]. Cham: Springer International Publishing, 2017.

[21] FescenkoI, Weis A. Imaging magnetic scalar potentials by laser-induced fluorescence from bright and darkatoms[EB/OL]. ( 2014-04-08)[ 2020-04-09]. https:∥arxiv.org/abs/1404. 2215.

[22] Weis A, Sautenkov V A, Hänsch T W. Observation of ground-state Zeeman coherences in the selective reflection from cesium vapor[J]. Physical Review A, 1992, 45(11): 7991-7996.

[23] Gross B, Papageorgiou N, Sautenkov V, et al. Velocity selective optical pumping and dark resonances in selective reflection spectroscopy[J]. Physical Review A-Atomic, Molecular, and Optical Physics, 1997, 55(4): 2973-2981.

[24] Appelt S. Ben-Amar Baranga A, Young A R, et al. Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells[J]. Physical Review A, 1999, 59(3): 2078-2084.

[25] 高秀敏, 曾祥堉, 单新治, 等. K原子磁力仪的发展[J]. 光学仪器, 2018, 40(2): 85-94.

    Gao X M, Zeng X Y, Shan X Z, et al. The research progress of K atomic magnetometer[J]. Optical Instruments, 2018, 40(2): 85-94.

[26] Knappe S, Alem O, Sheng D, et al. Microfabricated optically-pumped magnetometers for biomagnetic applications[J]. Journal of Physics: Conference Series, 2016, 723: 012055.

[27] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 2007, 3(4): 227-234.

[28] KitchingJ, KnappeS, ShahV, et al.Microfabricated atomic magnetometers and applications[C]∥2008 IEEE International Frequency Control Symposium, May 19-21, 2008, Honolulu, HI, USA.New York: IEEE Press, 2008: 789- 794.

[29] Kitching J, Donley E A, Knappe S, et al. NIST on a chip: Realizing SI units with microfabricated alkali vapour cells[J]. Journal of Physics: conference Series, 2016, 723: 012056.

[30] Krzyzewski S P, Perry A R, Gerginov V, et al. Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer[J]. Journal of Applied Physics, 2019, 126(4): 044504.

[31] SchwindtP, Lindseth BJ, KnappeS, et al.Chip scale atomic magnetometers[C]∥2006 IEEE International Magnetics Conference (INTERMAG), May 8-12, 2006, San Diego, CA, USA.New York: IEEE Press, 2006: 386.

[32] Happer W, Wijngaarden W A. An optical pumping primer[J]. Hyperfine Interactions, 1987, 38(1/2/3/4): 435-470.

[33] Alem O, Sander T H, Mhaskar R, et al. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers[J]. Physics in Medicine and Biology, 2015, 60(12): 4797-4811.

[34] Dellis A T, Shah V, Donley E A, et al. Low helium permeation cells for atomic microsystems technology[J]. Optics Letters, 2016, 41(12): 2775-2778.

[35] Jarvis K N, Devlin J A, Wall T E, et al. Blue-detuned magneto-optical trap[J]. Physical Review Letters, 2017, 120(8): 083201.

[36] Colangelo G, Ciurana F M, Bianchet L C, et al. Simultaneous tracking of spin angle and amplitude beyond classical limits[J]. Nature, 2017, 543(7646): 525-528.

[37] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(5): 273-276.

[38] Li J D, Quan W, Zhou B Q, et al. SERF atomic magnetometer - Recent advances and applications: a review[J]. IEEE Sensors Journal, 2018, 18(20): 8198-8207.

[39] Kitching J. Chip-scale atomic devices[J]. Applied Physics Reviews, 2018, 5(3): 031302.

[40] Knappe S, Velichansky V L, Robinson H G, et al. Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers[J]. Review of Scientific Instruments, 2003, 74(6): 3142-3145.

[41] 李辉, 江敏, 朱振南, 等. 铷-氙气室原子磁力仪系统磁场测量能力的标定[J]. 物理学报, 2019, 68(16): 160701.

    Li H, Jiang M, Zhu Z N, et al. Calibration of magnetic field measurement ability of rubidium xenon atomic magnetometer system[J]. Acta Physica Sinica, 2019, 68(16): 160701.

[42] KnappeS, VelichanskyV, Robinson HG, et al.Atomic vapor cells for miniature frequency references[C]∥IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003, May 4-8, 2003, Tampa, FL, USA.New York: IEEE Press, 2003: 31- 32.

[43] Yang W, Conkey D B, Wu B, et al. Atomic spectroscopy on a chip[J]. Nature Photonics, 2007, 1(6): 331-335.

[44] Balabas M V, Budker D, Kitching J, et al. Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells[J]. Journal of the Optical Society of America B, 2005, 23(6): 1001-1006.

[45] 许高斌, 皇华, 展明浩, 等. ICP深硅刻蚀工艺研究[J]. 真空科学与技术学报, 2013, 33(8): 832-835.

    Xu G B, Huang H, Zhan M H, et al. Experimental evaluation of inductively coupled plasma deep silicon etching[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(8): 832-835.

[46] 杜超, 刘翠荣, 阴旭, 等. 阳极键合研究现状及影响因素[J]. 材料科学与工艺, 2018, 26(5): 82-88.

    Du C, Liu C R, Yin X, et al. Research status and influencing factors of anodic bonding[J]. Materials Science and Technology, 2018, 26(5): 82-88.

[47] Liew L A, Knappe S, Moreland J, et al. Microfabricated alkali atom vapor cells[J]. Applied Physics Letters, 2004, 84(14): 2694-2696.

[48] Gong F, Jau Y, Jensen K, et al. Electrolytic fabrication of atomic clock cells[J]. Review of Scientific Instruments, 2006, 77(7): 076101.

[49] Knappe S, Gerginov V. Schwindt P D D, et al. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability[J]. Optics Letters, 2005, 30(18): 2351-2353.

[50] 尤政, 马波, 阮勇, 等. 芯片级原子器件MEMS碱金属蒸气腔室制作[J]. 光学精密工程, 2013, 21(6): 1440-1446.

    You Z, Ma B, Ruan Y, et al. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices[J]. Optics and Precision Engineering, 2013, 21(6): 1440-1446.

[51] SuJ, KeD, ZhongW, et al.Microfabrication of 85Rb vapor cell for chip-scale atomic clocks[C]∥2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, April 20-24, 2009, Besancon, France.New York: IEEE Press, 2009: 1016- 1018.

[52] ZhangC, Zhang SY, Guo DZ, et al.Micro Rb atomic vapor cells for the chip-scale atomic clock[C]∥2014 IEEE International Frequency Control Symposium (FCS), May 19-22, 2014, Taipei, Taiwan, China.New York: IEEE Press, 2014: 1- 3.

[53] Maurice V, Rutkowski J, Kroemer E, et al. Microfabricated vapor cells filled with a cesium dispensing paste for miniature atomic clocks[J]. Applied Physics Letters, 2017, 110(16): 164103.

[54] 李新坤, 王飞飞, 梁德春, 等. 芯片级铷原子气室的制备[J]. 中国科学(信息科学), 2015, 45(5): 693-700.

    Li X K, Wang F F, Liang D C, et al. Fabrication of chip-scale alkali metal cells[J]. Science in China (Information Sciences), 2015, 45(5): 693-700.

[55] Karlen S, Gobet J, Overstolz T, et al. Lifetime assessment of RbN3-filled MEMS atomic vapor cells with Al2O3 coating[J]. Optics Express, 2017, 25(3): 2187-2194.

[56] Burt RC. Sodium by electrolysis through glass[D]. Pasadena: California Institute of Technology, 1926.

[57] Kang S, Mott R P, Gilmore K A, et al. A low-power reversible alkali atom source[J]. Applied Physics Letters, 2017, 110(24): 244101.

[58] Graf M T, Kimball D F, Rochester S M, et al. Relaxation of atomic polarization in paraffin-coated cesium vapor cells[J]. Physical Review A, 2005, 72(2): 023401.

[59] Seltzer SJ, Meares PJ, Romalis M V. Synchronous optical pumping of quantum revival beats for atomic magnetometery[EB/OL]. ( 2006-11-01)[2020-04-09]. https:∥arxiv.org/abs/physics/0611014.

[60] 孙伟民, 刘双强, 赵文辉. 光学原子磁力仪[M]. 哈尔滨: 哈尔滨工程大学出版社, 2015.

    Sun WM, Liu SQ, Zhao WH. Optical atomic magnetometer[M]. Harbin: Harbin Engineering University Press, 2015.

[61] Schwindt P D D, Lindseth B, Knappe S, et al. Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique[J]. Applied Physics Letters, 2007, 90(8): 081102.

[62] Schwindt P DD, Johnson CN. A two-color pump probe atomic magnetometer for magnetoencephalography[C]∥IEEE 2010 International Frequency Control Symposium, June 2-4, 2010,New York: IEEE Press, 2010: 371- 375.

[63] Shah V, Romalis M V. Spin-exchange relaxation-free magnetometry using elliptically polarized light[J]. Physical Review A, 2009, 80(1): 013416.

[64] PreusserJ, GerginovV, KnappeS, et al.A microfabricated photonic magnetometer[C]∥Sensors, 2008 IEEE, October 26-29, 2008, Lecce, Italy.New York: IEEE Press, 2008: 344- 346.

[65] Mhaskar R, Knappe S, Kitching J. A low-power, high-sensitivity micromachined optical magnetometer[J]. Applied Physics Letters, 2012, 101(24): 241105.

[66] QiangH, KangX, ZongjunH, et al., 2013, 760/761/762: 896- 900.

[67] Fang J C, Li R J, Duan L H, et al. Study of the operation temperature in the spin-exchange relaxation free magnetometer[J]. Review of Scientific Instruments, 2015, 86(7): 073116.

[68] SchwindtP, Johnson CN. Atomic magnetometer for human magnetoencephalograpy[R]. [S.l.]: [s. n.], 2010.

[69] Johnson C. Schwindt P D D, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 2010, 97(24): 243703.

[70] Jiménez-Martínez R, Knappe S, Kitching J. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening[J]. The Review of Scientific Instruments, 2014, 85(4): 045124.

[71] Castagna N, Weis A. Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect[J]. Physical Review A, 2011, 84(5): 053421.

[72] Seltzer SJ. Developments in alkali-metal atomic magnetometry[D]. Princeton: Princeton University, 2008.

[73] Dong H F, Fang J C, Zhou B Q, et al. Three-dimensional atomic magnetometry[J]. The European Physical Journal Applied Physics, 2012, 57(2): 21004.

[74] Dong H F, Lin H B, Tang X B. Atomic-signal-based zero-field finding technique for unshielded atomic vector magnetometer[J]. IEEE Sensors Journal, 2013, 13(1): 186-189.

[75] Huang H C, Dong H F, Chen L, et al. Single-beam three-axis atomic magnetometer[J]. Applied Physics Letters, 2016, 109(6): 062404.

[76] 张红. SERF超高灵敏磁场测量装置磁噪声抑制方法与实验研究[D]. 南京: 东南大学, 2016.

    ZhangH. Magnetic noise suppression methods and experiment researches based on ultrahigh sensitive SERF atomic magnetometer[D]. Nanjing: Southeast University, 2016.

[77] Sheng D, Perry A R, Krzyzewski S P, et al. A microfabricated optically-pumped magnetic gradiometer[J]. Applied Physics Letters, 2017, 110(3): 031106.

[78] Dang H, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.

[79] Perry A R, Sheng D, Krzyzewski S P, et al. Microfabricated optically-pumped magnetic arrays for biomedical imaging[J]. Proceeding of SPIE, 2017, 10119: 101190V.

[80] Patton B, Zhivun E, Hovde D, et al. All-optical vector atomic magnetometer[J]. Physical Review Letters, 2014, 113: 013001.

[81] He K, Wan S, Sheng J, et al. A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography[J]. Review of Scientific Instruments, 2019, 90(6): 064102.

[82] 张斌. 小型化铯光泵原子磁力仪研究[D]. 杭州: 浙江大学, 2015.

    ZhangB. Research on the compact optically pumped Cs atomic magnetometer[D]. Hangzhou: Zhejiang University, 2015.

[83] Liu X J, Yang Y H, Ding M, et al. Single-fiber Sagnac-like interferometer for optical rotation measurement in atomic spin precession detection[J]. Journal of Lightwave Technology, 2019, 37(4): 1317-1324.

[84] Schwindt P D D, Knappe S, Shah V, et al. Chip-scale atomic magnetometer[J]. Applied Physics Letters, 2004, 85(26): 6409-6411.

[85] Soheilian A, Ranjbaran M, Tehranchi M M. Position and direction tracking of a magnetic object based on an Mx-atomic magnetometer[J]. Scientific Reports, 2020, 10(1): 1294.

[86] Jimenez-Martinez R, Griffith W C, Wang Y J, et al. Sensitivity comparison of mx and frequency-modulated Bell-Bloom Cs magnetometers in a microfabricated cell[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(2): 372-378.

[87] KitchingJ, KnappeS, Griffith WC, et al.Uncooled, millimeter-scale atomic magnetometers with femtotesla sensitivity[C]∥Sensors, 2009 IEEE, October 25-28, 2009, Christchurch, New Zealand.New York: IEEE Press, 2009: 1844- 1847.

[88] PollingerA, EllmeierM, MagnesW, et al.Enable the inherent omni-directionality of an absolute coupled dark state magnetometer for e.g. scientific space applications[C]∥2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, May 13-16, 2012, Graz, Austria.New York: IEEE Press, 2012: 33- 36.

[89] Gruji c' Z D , Weis A. Atomic magnetic resonance induced by amplitude-, frequency-, or polarization-modulatedlight[EB/OL]. ( 2013-05-28) [2020-04-06]. https:∥arxiv.org/abs/1305. 6574.

[90] Jiménez-Martínez R, Griffith W C, Knappe S, et al. High-bandwidth optical magnetometer[J]. Journal of the Optical Society of America B, 2012, 29(12): 3398-3403.

[91] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.

[92] Shah V, Knappe S. Schwindt P D D, et al. Subpicotesla atomic magnetometry with a microfabricated vapour cell[J]. Nature Photonics, 2007, 1(11): 649-652.

[93] Griffith W C, Knappe S, Kitching J. Femtotesla atomic magnetometry in a microfabricated vapor cell[J]. Optics Express, 2010, 18(26): 27167-27172.

[94] Wyllie R, Kauer M, Smetana G S, et al. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array[J]. Physics in Medicine and Biology, 2012, 57(9): 2619-2632.

[95] Hunter D, Piccolomo S, Pritchard J D, et al. Free-induction-decay magnetometer based on a microfabricated Cs vapor cell[J]. Physical Review Applied, 2018, 10(10): 014002.

[96] Arnold D, Siegel S, Grisanti E, et al. A rubidium Mx-magnetometer for measurements on solid state spins[J]. Review of Scientific Instruments, 2017, 88(2): 023103.

[97] 李曙光. 原子磁力仪的研究[D]. 杭州: 浙江大学, 2009.

    Li SG. Investigation on the atomic magnetometer[D]. Hangzhou: Zhejiang University, 2009.

[98] Li J J, Du P C, Fu J Q, et al. Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography[J]. Chinese Physics B, 2019, 28(4): 145-149.

[99] 王旭桐. 小型化SERF型原子磁强计的研制[D]. 昆明: 云南大学, 2019.

    Wang XT. Development of miniaturized spin-exchange relaxation-free atomic magnetometer[D]. Kunming: Yunnan University, 2019.

[100] 黄圣洁, 张桂迎, 胡正珲, 等. 利用高灵敏的无自旋交换弛豫原子磁力仪实现脑磁测量[J]. 中国激光, 2018, 45(12): 1204006.

    Huang S J, Zhang G Y, Hu Z H, et al. Human magnetoencephalography measurement by highly sensitive SERF atomic magnetometer[J]. Chinese Journal of Lasers, 2018, 45(12): 1204006.

[101] Baillet S. Magnetoencephalography for brain electrophysiology and imaging[J]. Nature Neuroscience, 2017, 20(3): 327-339.

[102] Bison G, Wynands R, Weis A. A laser-pumped magnetometer for the mapping of human cardiomagnetic fields[J]. Applied Physics B, 2003, 76(3): 325-328.

[103] Xia H. Ben-Amar Baranga A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(21): 211104.

[104] Alem O, Benison A M, Barth D S, et al. Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode[J]. The Journal of Neuroscience, 2014, 34(43): 14324-14327.

[105] Kamada K, Sato D, Ito Y, et al. Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer[J]. Japanese Journal of Applied Physics, 2015, 54(2): 026601.

[106] Boto E, Bowtell R, Fromhold K P, et al. On the potential of a new generation of magnetometers for MEG: a beamformer simulation study[J]. PLoS One, 2016, 11(8): 0157655.

[107] Sheng J W, Wan S G, Sun Y F, et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. The Review of Scientific Instruments, 2017, 88(9): 094304.

[108] Korth H, Strohbehn K, Tejada F, et al. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb[J]. Journal of Geophysical Research: Space Physics, 2016, 121(8): 7870-7880.

[109] Khvalin A L. A vector magnetometer for measuring weak fields[J]. Measurement Techniques, 2015, 57(10): 1184-1188.

[110] Bison G, Bondar V, Schmidt-Wellenburg P, et al. Sensitive and stable vector magnetometer for operation in zero and finite fields[J]. Optics Express, 2018, 26(13): 17350-17359.

[111] Alem O, Mhaskar R, Jiménez-Martínez R, et al. Magnetic field imaging with microfabricated optically-pumped magnetometers[J]. Optics Express, 2017, 25(7): 7849-7858.

[112] Sun W M, Huang Q, Huang Z J, et al. All-Optical Vector Cesium Magnetometer[J]. Chinese Physics Letters, 2017, 34(5): 058501.

吴梓楠, 赵正钦, 温钟平, 覃添, 欧中华, 周晓军, 刘永, 岳慧敏. 高灵敏度微型光学原子磁力仪研究进展[J]. 激光与光电子学进展, 2020, 57(23): 230002. Zinan Wu, zhengqin Zhao, Zhongping Wen, Tian Qin, Zhonghua Ou, Xiaojun Zhou, Yong Liu, Huimin Yue. Research Progress on High Sensitivity and Miniature Optical-Atomic Magnetometer[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!