红外与激光工程, 2016, 45 (11): 1118001, 网络出版: 2017-01-20   

基于主动约束阻尼层的次镜支撑结构设计

Support design of secondary mirror based on active constrained layer damping treatments
作者单位
1 中国科学院长春光学精密机械与物理研究所 空间机器人工程中心空间机器人系统创新研究室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了提高空间望远镜次镜支撑结构的动力学性能, 利用主动约束阻尼层对次镜支撑结构进行了设计, 主动约束阻尼层在柔性结构表面覆盖阻尼材料和压电陶瓷材料, 是对柔性结构进行振动抑制的有效手段。首先建立了主动约束阻尼层的有限元模型, 采用比例微分控制算法对压电陶瓷进行闭环控制, 分析了阻尼材料厚度和控制增益对支撑结构阻尼特性的影响, 结果表明增大阻尼层厚度或增大控制增益能够提高结构阻尼特性, 但增大阻尼层厚度同时也会降低压电陶瓷的驱动性能。对空间望远镜整体结构的分析结果显示, 覆盖主动约束阻尼层后支撑结构的固有频率会略微降低, 但是次镜位置的频率响应明显下降, 次镜的面型精度也有提高。
Abstract
Active constrained layer damping treatments were applied to the secondary mirror supporting structure for space telescopes in order to improve its dynamic performance. Active constrained layer damping treatments, which apply piezoelectric actuators and viscoelastic materials to flexible structures, promise to be an effective means of vibration suppression in flexible structures. A finite element model for active constrained layer damping treatments was developed and a proportional derivative control law was applied on piezoelectric ceramics. Effects of key parameters, such as viscoelastic layer thickness and control gain were investigated. It is shown that the increase of viscoelastic layer thickness and control gain could both enhance the damping capability. However, the actuation ability of piezoelectric ceramics is reduced by the viscoelastic layer. Analysis results of the telescope indicate that natural frequencies of the supporting structure decrease slightly after employing active constrained layer damping treatments. However, the frequency response at the secondary mirror is suppressed apparently and the surface accuracy is improved as well.
参考文献

[1] Han Changyuan. Study on optical system of high resolution space camera [J]. Optics and Precision Engineering, 2008, 16(11): 2164-2172. ( in Chinese)

[2] Li Wei, Liu Hongwei, Guo Quanfeng, et al. Combined supporting structure of thin wall joint cylinder and supporting bar between primary mirror and second mirror in space camera [J]. Optics and Precision Engineering, 2010, 18(12): 2633-2641. ( in Chinese)

[3] Wang Fuguo, Zhang Jingxu, Yang Fei, et al. Crossed-plate type support structure of the second mirror[J]. Acta Photonica Sinica, 2009, 38(3): 674-676. (in Chinese)

[4] An Qichang, Zhang Jingxu, Zhang Limin. Dynamics analysis of telescope third mirror wire support structure[J]. Infrared and Laser Engineering, 2013, 42(8): 2115-2119. (in Chinese)

[5] Xin Hongwei, Yang Jinsong, Gao Minghui, et al. Support design for secondary mirror of high resolution space telescope[J]. Infrared and Laser Engineering, 2011, 40(9): 1724-1729. ( in Chinese)

[6] Zhao Hongchao, Zhang Jingxu, Yang Fei, et al. Preloading eight-vane spider for supporting structure of secondary mirror [J]. Optics and Precision Engineering, 2013, 21(5): 1199-1204. (in Chinese)

[7] An Qichang, Zhang Jingxu, Zhang Limin. Dynamics modeling and wind load function analysis of the secondary mirror support[J]. Infrared Technology, 2013, 35(12): 798-802. (in Chinese)

[8] Johnson C D, Vatta V. Design of passive damping systems [J]. Journal of Vibration and Acoustics, 1995, 117: 171-176.

[9] Liang Lu, Shen Zhichun, Qi Xiaojun, et al. Whole satellite vibration attenuation with damping investigation into experiment phenomenon[J]. Aerospace Shanghai, 2008(4): 39-45. (in Chinese)

[10] Nakra B C. Vibration control in machines and structures using viscoelastic damping[J]. Journal of Sound and Vibration, 1998, 211(3): 449-465.

[11] Huang S C, Inman D J, Austin E M. Some design considerations for active and passive constrained layer damping treatments[J]. Smart Mater Struct, 1996, 5(3): 301-313.

[12] Kerwin E M. Damping of flexural waves by a constrained viscoelastic layer[J]. The Journal of the Acoustical Society of America, 1959, 31(7): 952-962.

[13] Mead D, Markus S. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions [J]. Journal of Sound and Vibration, 1969, 10(2): 163-175.

[14] Rao D. Frequency and loss factors of sandwich beams under various boundary conditions [J]. Journal of Mechanical Engineering Science, 1978, 20(5): 271-282.

[15] Deng Nianchun, Zou Zhenzhu, Du Huaming, et al. A finite element dynamic analysis of constrained plates[J]. Journal of Vibration Engineering, 2003, 16(4): 489-492. (in Chinese)

[16] Qian Zhendong, Chen Guoping, Zhu Demao. Vibration analysis of plate attached to constrained damping layer[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(5): 517-522. (in Chinese)

[17] Reddy J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4): 745-752.

[18] Hu H, Belouettar S, Potier-Ferry M, et al. Review and assessment of various theories for modeling sandwich composites[J]. Composite Structures, 2010, 29(4): 107-110.

[19] Baz A, Ro J. Performance characteristics of active constrained layer damping[J]. Shock and Vibration, 1995, 2(1): 33-42.

[20] Baz A, Ro J. Vibration control of plates with active constrained layer damping[J]. Smart Materials and Structures, 1996, 5(3): 272-280.

[21] Ray M C, Ro J, Baz A. Active constrained layer damping of thin cylindrical shells[J]. Journal of Sound and Vibration, 2001, 240(5): 921-935.

[22] Zheng Ling, Wang Yi, Xie Ronglu. Vibration control of active constrained layer damping structure[J]. Journal of Chongqing University, 2010, 33(2): 1-7. (in Chinese)

[23] Shi Yinming, Zhang Hongyuan, Hua Hongxing, et al. The finite element modeling and model reduction for a cantilever beam with active constrained layer damping[J]. Journal of Vibration and Shock, 2001, 20(2): 29-31. (in Chinese)

[24] Sher B, Moreira R. Dimensionless analysis of constrained damping treatments [J]. Composite Structures, 2013, 99: 241-254.

[25] Liu Dahsin, Li Xiaoyu. An overall view of laminate theories based on displacement hypothesis[J]. Journal of Composite Materials, 1996, 30(14): 1539-1561.

[26] Johnson C D, Kienholz D A. Finite element prediction of damping in structures with constrained viscoelastic layers [J]. AIAA Journal, 1982, 20(9): 1284-1290.

[27] Cote F, Masson P, Mrad N, et al. Dynamic and static modeling of piezoelectric composite structures using a thermal analogy with MSC/NASTRAN[J]. Composite Structures, 2004, 65: 471-484.

田士涛, 徐振邦, 秦超, 夏明一, 吴清文. 基于主动约束阻尼层的次镜支撑结构设计[J]. 红外与激光工程, 2016, 45(11): 1118001. Tian Shitao, Xu Zhenbang, Qin Chao, Xia Mingyi, Wu Qingwen. Support design of secondary mirror based on active constrained layer damping treatments[J]. Infrared and Laser Engineering, 2016, 45(11): 1118001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!