Photonic Sensors, 2015, 5 (3): 217, Published Online: Oct. 22, 2015   

OFDR Based Distributed Temperature Sensor Using the Three-Channel Simultaneous Radio-Frequency Lock-In Technique

Author Affiliations
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116023, China
Abstract
Weak signal detection for single-mode fiber-optic distributed temperature sensor (DTS) is a key technology to achieve better performance. A hybrid technique combining the incoherent optical frequency domain reflectometry (IOFDR) and the three-channel simultaneous radio-frequency (RF) lock-in amplifier (LIA) is presented to improve the signal-to-noise ratio (SNR) of the measured spontaneous Raman backscattered light. The field programmable gate array (FPGA) based RF-LIA is designed with a novel and simple structure. The measurement frequency range is achieved from 1 kHz to 100 MHz. Experimental results show that the backscattered light signal of picowatt level can be detected with high SNR. With a 2.5 km single-mode fiber, a 1064 nm laser source, and the measurement time of 500 s, this sensing system can reach a spatial resolution of 0.93 m and a temperature resolution of about 0.2℃.
References

[1] W. Wang, J. Chang, G. Lv, Z. Wang, Z. Liu, S. Luo, et al., “Wavelength dispersion analysis on fiber-optic Raman distributed temperature sensor system,” Photonic Sensors, 2013, 3(3): 256-261.

[2] T. Fukuzawa, H. Shida, K. Oishi, N. Takeuchi, and S. Adachi, “Performance improvements in Raman distributed temperature sensor,” Photonic Sensors, 2013, 3(4): 314-319.

[3] G. Bolognini and A. Hartog, “Raman-based fibre sensors: trends and applications,” Optical Fiber Technology, 2013, 19(6): 678-688.

[4] M. A. Farahani and T. Gogolla, “Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing,” Journal of Lightwave Technology, 1999, 17(8): 1379-1391.

[5] J. Geng, J. Xu, Y. Li, G. Wei, and C. Guo, “The development of the model and arithmetic for the fully distributed fiber optic sensor based on Raman optical-fiber frequency-domain reflectometry (ROFDR),” Sensors and Actuators A: Physical, 2002, 101(1-2): 132-136.

[6] S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, and S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Optics Express, 2012, 20(4): 3456-3466.

[7] L. Meng, M. Jiang, Q. Sui, and D. Feng, “Optical-fiber distributed temperature sensor: design and realization,” Optoelectronics letters, 2008, 4(6): 415-418.

[8] E. Karamehmedovic and U. Glombitza, “Fiber optic distributed temperature sensor using incoherent optical frequency domain reflectometry,” in Proc. SPIE, vol. 5363, pp. 107-115, 2004.

[9] W. Hill, M. Fromme, J. Kübler, and I. Roda, “Method and apparatus for the spatially resolved measurement of a physical variable,” U. S. Patent 8818762, Aug. 26, 2014.

[10] G. Galzerano, E. Bava, R. Ottoboni, and C. Svelto, “Lock-in amplifier up to 530 MHz with phase and amplitude demodulation,” in IEEE Instrumentation and Measurement Technology Conference, vol. 2, pp. 1665-1668, 2003.

[11] P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Optics letters, 2002, 27(18): 1634-1636.

[12] D. B. Gopman, D. Bedau, and A. D. Kent, “A digitally configurable measurement platform using audio cards for high-resolution electronic transport studies,” Review of Scientific Instruments, 2012, 83(5): 054701.

[13] Z. Zhang, J. Wang, Y. Li, H. Gong, X. Yu, H. Liu, et al., “Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University,” Photonic Sensors, 2012, 2(2): 127-147.

[14] T. Reinsch and J. Henninges, “Temperaturedependent characterization of optical fibres for distributed temperature sensing in hot geothermal wells,” Measurement Science and Technology, 2010, 21(9): 094022-1-094022-15.

[15] X. Zhou, Q. Yu, and W. Peng, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Measurement Science and Technology, 2012, 23(8): 085102-1-085102-7.

[16] W. Hill, J. Kübler, and M. Fromme, “Single-mode distributed temperature sensing using OFDR,” in Proc. SPIE, vol. 7653, pp. 765342-765342, 2010.

[17] G. R.Williams, G. Brown, W. Hawthorne, A. H. Hartog, and P. C. Waite, “Distributed temperature sensing (DTS) to characterize the performance of producing oil wells,” in Proc. SPIE, vol. 4202, pp. 39-54, 2000.

[18] G. P. Agrawal, Fiber-optic communication systems. New York: Wiley & Sons, 2002.

[19] X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors, 2012, 12(7): 8601-8639.

Ke CHEN, Xinlei ZHOU, Wei PENG, Qingxu YU. OFDR Based Distributed Temperature Sensor Using the Three-Channel Simultaneous Radio-Frequency Lock-In Technique[J]. Photonic Sensors, 2015, 5(3): 217.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!