光学学报, 2021, 41 (1): 0123003, 网络出版: 2021-02-23   

超构表面高效调控电磁波 下载: 2063次特邀综述

High-Efficiency Manipulations on Electromagnetic Waves with Metasurfaces
作者单位
1 复旦大学光科学与工程系, 上海 200433
2 复旦大学物理学系, 上海 200433
3 中国科学院上海技术物理研究所, 上海 200083
4 上海大学通信与信息工程学院, 上海 200444
引用该论文

孙树林, 何琼, 郝加明, 肖诗逸, 周磊. 超构表面高效调控电磁波[J]. 光学学报, 2021, 41(1): 0123003.

Shulin Sun, Qiong He, Jiaming Hao, Shiyi Xiao, Lei Zhou. High-Efficiency Manipulations on Electromagnetic Waves with Metasurfaces[J]. Acta Optica Sinica, 2021, 41(1): 0123003.

参考文献

[1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[2] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776.

[3] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

[4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

[5] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

[6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

[7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

[8] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[9] Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431.

[10] Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 2019, 11(2): 380-479.

[11] Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908.

[12] Sievenpiper D, Zhang L J. Broas R F J, et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059-2074.

[13] Hao J M, Zhou L, Chan C T. An effective-medium model for high-impedance surfaces[J]. Applied Physics A, 2007, 87(2): 281-284.

[14] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307.

[15] Ma S J, Wang X K, Luo W J, et al. Ultra-wide band reflective metamaterial wave plates for terahertz waves[J]. Europhysics Letters, 2017, 117(3): 37007.

[16] Hao J M, Ren Q J, An Z H, et al. Optical metamaterial for polarization control[J]. Physical Review A, 2009, 80(2): 023807.

[17] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection[J]. Optics Letters, 2013, 38(4): 513-515.

[18] Jiang S C, Xiong X, Hu Y S, et al. Controlling the polarization state of light with a dispersion-free metastructure[J]. Physical Review X, 2014, 4(2): 021026.

[19] Sun W J, He Q, Hao J M, et al. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 2011, 36(6): 927-929.

[20] Zhou L, Wen W J, Chan C T, et al. Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields[J]. Physical Review Letters, 2005, 94(24): 243905.

[21] Martín-Moreno L. García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 2001, 86(6): 1114-1117.

[22] Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.

[23] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.

[24] Huang L L, Chen X Z, Bai B F, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2013, 2(3): e70.

[25] Pors A, Nielsen M G, Bernardin T, et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons[J]. Light: Science & Applications, 2014, 3(8): e197.

[26] Sun W J, He Q, Sun S L, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light: Science & Applications, 2016, 5(1): e16003.

[27] Li X, Xiao S Y, Cai B G, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23): 4940-4942.

[28] Chen X Z, Huang L L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.

[29] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.

[30] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345.

[31] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824.

[32] Wang S, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.

[33] Wang S M, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232.

[34] Yin X B, Ye Z L, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.

[35] Luo W J, Xiao S Y, He Q, et al. Photonic spin Hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 2015, 3(8): 1102-1108.

[36] Luo W J, Sun S L, Xu H X, et al. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency[J]. Physical Review Applied, 2017, 7(4): 044033.

[37] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light, Science & Applications, 2017, 6(6): e16276.

[38] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

[39] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

[40] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230.

[41] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

[42] Li L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197.

[43] Genevet P, Yu N F, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 2012, 100(1): 013101.

[44] Huang L, Chen X, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755.

[45] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Physical Review Applied, 2014, 2(4): 044012.

[46] Ma X, Pu M, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365.

[47] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943.

[48] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[49] Qu C, Xiao S Y, Sun S L, et al. A theoretical study on the conversion efficiencies of gradient meta-surfaces[J]. Europhysics Letters, 2013, 101(5): 54002.

[50] Ni X J, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72.

[51] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834.

[52] Ding X M, Monticone F, Zhang K, et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Advanced Materials, 2015, 27(7): 1195-1200.

[53] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.

[54] Hao J M, Wang J, Liu X L, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Applied Physics Letters, 2010, 96(25): 251104.

[55] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.

[56] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2011, 2: 517.

[57] Qu C, Ma S J, Hao J M, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23): 235503.

[58] Miao Z Q, Wu Q, Li X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 2015, 5(4): 041027.

孙树林, 何琼, 郝加明, 肖诗逸, 周磊. 超构表面高效调控电磁波[J]. 光学学报, 2021, 41(1): 0123003. Shulin Sun, Qiong He, Jiaming Hao, Shiyi Xiao, Lei Zhou. High-Efficiency Manipulations on Electromagnetic Waves with Metasurfaces[J]. Acta Optica Sinica, 2021, 41(1): 0123003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!