中国激光, 2022, 49 (4): 0405002, 网络出版: 2022-01-18  

诱导空间非相干和消衍射透镜阵列联用方式束匀滑方案的腔壁辐照特性分析及优化 下载: 580次

Analysis and Optimization of Irradiation Characteristics of Laser Quads on Hohlraum Wall Based on Broadband Laser Beams Smoothed Using Induced Spatial Incoherence and De-Diffraction Lens Array
作者单位
四川大学电子信息学院,四川 成都 610065
摘要
针对惯性约束聚变(ICF)装置中的光路排布和柱形靶腔结构,建立了基于诱导空间非相干(ISI)和消衍射透镜阵列(DLA)联用的宽带激光束匀滑方案的靶腔内光传输模型,进而开展了腔壁辐照特性的分析和优化。在基于ISI与DLA联用的宽带激光束匀滑方案中,主透镜焦距与柱形靶腔参数的匹配至关重要,否则将对不同入射角度集束在腔壁处的光斑造成不同程度的破坏,导致腔壁光斑交叉重叠,从而严重破坏腔壁辐照的均匀性。本文通过分析主透镜焦距和DLA参数等对腔壁辐照特性的影响规律,开展了宽带激光束匀滑方案的参数设计及优化,以改善腔壁辐照的均匀性。结果表明:增大主透镜焦距,可有效保持不同入射角度集束在腔壁处光斑的包络,从而减轻腔壁光斑交叉重叠的现象;合理选取DLA的子透镜数目和子透镜长短轴比例,可以提高腔壁光斑的占空比,并有效减少束匀滑所需的时间;优化内环集束的入射角度,可以避免内环与外环集束在腔壁上交叉重叠。
Abstract
Objective

In the indirectly driven inertial confinement fusion facility, the high X-ray irradiation uniformity on the target pellet is the key to the success of the implosion. The uniformity of X-ray irradiation on the target pellet is primarily determined using the uniformity of laser irradiation on the hohlraum wall in the initial stage of laser irradiation on the hohlraum wall; the uniformity of irradiation on the hohlraum wall is determined using the symmetry of the distribution of laser spots on the hohlraum wall and the uniformity of the intensity of a single laser spot on the hohlraum, Therefore, it is necessary to analyze the irradiation uniformity of the laser quads on the hohlraum wall. Many researchers are currently studying the irradiation characteristics of the laser beam on the hohlraum wall, but the majority of them are discussing the beam smoothing scheme of the SSD, CPP, and PCP combination. Recently, the Shanghai Laser Plasma Research Institute proposed a broadband laser beam smoothing scheme based on induced spatial incoherence (ISI) and de-diffraction lens array (DLA). However, no research has been conducted on the irradiation characteristics of the laser beam on the hohlraum wall using this smoothing scheme. Therefore, this study analyzes and optimizes the irradiation characteristics of broadband laser quads on the hohlraum wall using DLA combined with ISI.

Methods

Aiming at laser quads configuration and cylindrical hohlraum structure in inertial confinement fusion (ICF) facility, the propagation model for the laser quads in the hohlraum based on broadband laser beam smoothed by ISI and de-DLA has been built up. The parameters of the broadband laser beam smoothing scheme have been optimized in this study via analyzing the influence of the focal length of the principal lens and DLA parameters on the irradiation characteristics on the hohlraum wall.

Results and Discussions

In the broadband laser beam smoothing scheme based on the combination of ISI and DLA, the mismatch between the focal length of the primary lens and the parameters of the hohlraum will deform the intensity envelope of laser spots on the hohlraum wall (Fig.4), resulting in laser spot overlap and irradiation nonuniformity (Fig.6). Increasing the focal length of the principal lens can effectively suppress the envelope distortion of laser spots on the hohlraum wall (Fig.7), thereby reducing the overlap of the laser spots and improving the irradiation uniformity on the hohlraum wall (Fig.12). Furthermore, by appropriately adjusting the number of DLA sub-lens and the long and short axes ratio of the sub-lens, the duty ratio of laser spots on the hohlraum wall increases, and irradiation uniformity of the laser quads on the hohlraum wall improves (Fig.14 and Table 2).

Conclusions

The propagation model for the laser quads in the hohlraum based on broadband laser beam smoothed using ISI and de-DLA has been built in this study, aiming at the optical path arrangement scheme and cylindrical target hohlraum structure of the NIF, and then the irradiation characteristics of the laser quads on the hohlraum wall have been analyzed and optimized. The results show that the mismatch between the focal length of the primary lens and parameters of the cylindrical target hohlraum will cause varying degrees of damage to the envelope of the laser spots on the hohlraum wall for beams with different incident angles, as a result of the laser spots overlapping on the hohlraum wall, the irradiation uniformity on the hohlraum wall greatly diminishes. The effect of the principal lens focal length, the number of DLA sub-lens, and the long and short axes ratio of the sub-lens on the intensity distribution of the laser quads on the hohlraum wall are discussed on this basis. The optimization of these parameters, such as the principal lens focal length, number of DLA sub-lens, the long and short axes ratio of the sub-lens, and incident angle of the laser quads, achieves the improvement of the irradiation uniformity on the hohlraum wall. The results show that increasing the focal length of the primary lens appropriately can effectively retain the envelope of the laser spots on the hohlraum wall for beams with different incident angles, minimizing the overlap of the laser spots on the hohlraum wall. Besides, the duty ratio of laser spots on the hohlraum wall increases, and the time required for beam smoothing reduces when the number of DLA sub-lens and the long and short axes ratio of the sub-lens are optimized. Furthermore, after optimizing the incident angle of the inner cone laser quads, the overlap of the inner and outer cones laser quads on the hohlraum wall is eliminated.

1 引言

在间接驱动的惯性约束聚变装置中,靶丸均匀压缩对激光束在靶腔内壁的初始辐照均匀性提出了极高要求。一方面,激光光斑的局部非均匀性会加剧激光等离子体不稳定性(LPI),在降低X射线转换效率的同时产生超热电子[1];另一方面,腔壁上激光辐照的不均匀性会导致X射线的不均匀性,从而破坏靶丸压缩过程的对称性,进而导致点火失败。为了提高靶面(靶丸或靶腔壁)的辐照均匀性,人们已经发展了多种束匀滑技术,包括时域束匀滑技术、空域束匀滑技术及偏振匀滑技术(PS)[2]。基于宽带光源的束匀滑技术对LPI的抑制效果较好[3],这类技术包括1983年Lehmberg等[4]提出的诱导空间非相干(ISI)匀滑技术,1991年日本Matsushima等[5-6]提出的宽带光角色散匀滑技术,1993年法国Veron等[7]提出的基于宽带光和多模光纤的匀滑技术,1993年日本Nakano等[8]提出的采用单模光纤降低时间相干性、采用多模光纤降低空间相干性的匀滑技术。2019年,上海激光等离子体研究所研制出了可以实现3.1 THz带宽的宽带二倍频激光装置“昆吾”[9-10]。2020年,美国罗切斯特大学激光能量实验室提出了建造具有10 THz带宽FLUX激光驱动器的计划[11-12]。由上海激光等离子体研究所提出的消衍射透镜阵列(DLA)联合ISI的匀滑方案[13]采用宽带光源进行辐照,通过设置透镜阵列中子透镜的厚度差,使透镜阵列(LA)各透射子光束的延时之差均超过了相干时间,实现了透射子光束在靶面上的非相干叠加;同时,该方案利用具有缓变透过率的消衍射透镜阵列抑制子透镜硬边衍射引起的靶面光强分布不均匀,极大地改善了靶面光强的均匀性。

在间接驱动惯性约束聚变装置中,靶丸的高均匀度X光辐照是内爆成功的关键。在激光辐照腔壁初期,靶丸的X光辐照均匀性主要由腔壁的激光辐照均匀性决定,而腔壁的辐照均匀性则由腔壁上单个光斑的光强均匀性和所有光斑的分布均匀性决定[14]。因此,分析腔壁的辐照均匀性是十分必要的。目前,已有许多学者对激光束的腔壁辐照特性进行了研究,但大多是针对光谱角色散(SSD)、连续相位板(CPP)、偏振控制板(PCP)联用的束匀滑方案进行讨论[15-16],尚缺乏针对基于DLA联合ISI的宽带激光腔壁辐照特性的相关研究。本文通过建立基于ISI和DLA联用的宽带激光靶腔内光传输模型,分析了主焦距透镜和DLA参数对腔壁辐照特性的影响规律,进而对ISI和DLA进行了参数优化。

2 理论模型

图1给出了ISI与DLA联用的宽带激光在柱型靶腔内的传输示意图,其中,XYZ为入射激光束坐标系,xy为腔壁坐标系,α为入射激光束与腔轴的夹角。

图 1. 基于ISI与DLA联用的匀滑方案的靶腔内激光传输示意图

Fig. 1. Schematic illustration of laser beam smoothed by ISI and DLA in a cylindrical hohlraum

下载图片 查看所有图片

以美国国家点火(NIF)装置为例,其双端共注入192路激光束,采用2×2集束方式,共48个集束,平均分配在柱形腔两侧。图2为柱形腔单端激光束的入射角度及光路排布示意图,单端内环和外环共24个集束,其中:内环集束分别以23.5°和30°入射,共有8个集束间隔排布;外环集束分别以44.5°和50°入射,共有16个集束间隔排布[17]

图 2. 单端激光束的光路排布

Fig. 2. Beam configuration at one entrance of hohlraum

下载图片 查看所有图片

对于集束中的单激光束,其入射到DLA上的光场分布可以表示为 E0(x0y0t)A0exp{|x02y02(w/2)2|n}×exp(iφrandom)exp(iωt)式中:x0y0分别为入射光场坐标;t为时间;A0为光场振幅;w为束腰宽度;n为超高斯光束的阶数;i为虚数单位;φrandom为随机相位畸变;ω为角频率。

激光通过消衍射阵列透镜后的第(m, n)个子光束可以表示为 EISIDLA(x0y0tmn)E0(x0y0t)·P(x0md1y0nd2)·exp{ik2fDLA[(x0md1)2(y0nd2)2]}exp[iω(tmnt)]式中:d1d2为子透镜的长轴和短轴;mn为透射子光束的编号;fDLA为子透镜焦距;k是光波矢的大小;ω为角频率;P为消衍射子透镜的振幅透过率函数。与普通透镜不同,消衍射透镜具有缓变的透过率,可将其等效为在普通透镜的基础上额外附加了软边光阑,故子透镜的透过率函数可以表示为 P(x0md1y0nd2)rect(x0md1d1)rect(y0nd2d2)·exp{[(x0md1)2(wxb/2)2]nxb}·exp{[(y0nd2)2(wyb/2)2]nyb}式中:wxbwyb分别为消衍射子透镜的等效软边光阑在x方向及y方向的束腰半径;nxbnyb分别为消衍射子透镜的等效软边光阑在x方向及y方向的阶数。

经推导,腔壁坐标系与入射光束所在坐标系之间的关系为 xRarcsin(X/R),yRcosα[cos(X/R)1]Ysinα

通过DLA后的第(m, n)个子光束经注入孔传输到柱形腔腔壁这一过程可用Collins公式描述,即: Ewall(xytmn)exp(ikL)iλfEISIDLA(XYtmn)·exp{ik2B[A(X2Y2)D(x2y2)2(XxYy)]}dXdY式中:Ewall(xytmn)为腔壁上的电场强度;ABCD为传输矩阵中的矩阵元,其中A =-d/fBfC=-1/fD=0,f为主透镜的焦距;k=2π/λ为光波矢的大小,λ为光波长;Lfd为轴上光程,d为激光束从焦面传输到腔壁的距离,可表示为 dR/sinαycosα[R(R2X2)1/2]/sinα于是,集束中的单激光束在腔壁上的光强为通过DLA后m×n个子光束在腔壁上光强的叠加,可表示为 Iimn|Ewall(xytmn)|2式中:Ii为集束中第i个激光束在腔壁上的光强,i=1,2,3,4。集束总光强为集束中各激光束经楔形透镜聚焦后光强的叠加,可表示为 Ii14Ii

单集束的焦面光斑尺寸可表示为[18]a1ffDLA·d1a2ffDLA·d2式中:a1表示X方向上的焦斑长度;a2表示Y方向上的焦斑长度。根据几何关系,腔壁光斑在x方向(柱形腔圆周方向)上的长度lxRarcsin(a1/R),腔壁光斑在y方向(腔轴方向)上的长度ly≈{Rcos α·[cos(a1/R)-1]-a2}/sin α。由此可知,集束的腔壁光斑随入射角α的增大而减小。

3 数值模拟和分析

3.1 腔壁辐照特性分析

根据所建立的基于ISI与DLA联用的宽带激光束匀滑方案的靶腔内光传输模型,本课题组对不同角度入射集束在腔壁上的光强分布进行了数值模拟。计算所采用的参数如下[13]:主透镜直径D=0.38 m,焦距f=1.575 m;消衍射阵列透镜由7×7子透镜单元组成,总口径D1=350 mm,子透镜长轴为d1=50 mm, 短轴为d2=35 mm,长短轴之比为10∶7,子透镜焦距fDLA=78.75 m。由(9)式可知焦斑大小为1 mm×0.7 mm。DLA子透镜的等效软边光阑参数为:wxb=45 mm,wyb=31.5 mm,nxb=5,nyb=4。输入光场E0n阶高斯平顶光束,n=7,束腰宽度w=0.31 m,二倍频后波长λ=527 nm,带宽为3 nm,相干时间约为310 fs,因而DLA相邻子透镜的厚度差控制在93 μm即可达到DLA相邻透射子光束时间延迟的要求。柱形腔结构参数为:R=2.29 mm,L=8.4 mm[19]

以不同角度入射的集束首先会经柱形腔注入孔,然后在腔内传输一段距离到达腔壁,因此有必要分析集束在注入孔处的光强分布。图3为不同入射角度集束在柱形腔注入孔(LEH)处的光强分布。

图 3. 不同入射角度集束在注入孔处的光强分布。(a)23.5°;(b)30°;(c)44.5°;(d)50°

Fig. 3. Intensity distributions of laser quad at laser entrance hole (LEH) with different incident angles. (a) 23.5°;(b) 30°;(c) 44.5°;(d) 50°

下载图片 查看所有图片

图3可以看出,入射角度越大的集束在注入孔处的光斑越大,即在y方向的长度越大。这是由于入射角度越大,集束光斑在注入孔处的投影面积越大。不同入射角度集束在注入孔处光斑的光强分布均匀性都较好,这正是ISI+DLA宽带激光束匀滑方案的优势所在。

图4给出了ISI+DLA宽带激光束匀滑方案和SSD+CPP束匀滑方案下,不同入射角度集束在腔壁上的光强分布。采用光通量对比度C[20]来评价腔壁光斑的均匀性,其积分区域取80%环围能量区域。采用能量利用率η[21]定量描述腔壁光斑的“塌边”程度[22]。光通量对比度C图4中已标注出。表1为采用ISI+DLA和SSD+CPP两种束匀滑方案时,腔壁光斑的能量利用率。

图 4. 不同入射角度集束在腔壁上的光强分布。(a)~(d)ISI+DLA方案;(e)~(h)CPP+SSD方案

Fig. 4. Intensity distributions of laser quad on hohlraum wall with different incident angles. (a)(d) ISI+DLA scheme;(e)(h) CPP+SSD scheme

下载图片 查看所有图片

表 1. 腔壁光斑的能量利用率

Table 1. Energy efficiency of hohlraum wall spot

SchemeEnergy efficiency /%
23.5°30°44.5°50°
ISI+DLA71.4372.2373.674.07
SSD+CPP81.1581.8783.283.33

查看所有表

图4可以看出,入射角度越小的集束在腔内的传输距离越长,腔壁光斑越大。此外,与传统的SSD+CPP束匀滑方案相比,采用ISI+DLA宽带激光束匀滑方案时的光通量对比度相对更低,这表明采用ISI+DLA宽带激光束匀滑方案得到的腔壁光斑的小尺度均匀性更好。结合图4表1可知,ISI+DLA宽带激光束匀滑方案的腔壁光斑存在比较明显的“塌边”现象,光斑包络形变较为严重,并且入射角度越小,腔壁光斑包络的变形程度越明显。这是由主透镜焦距与靶腔参数不匹配以及不同角度入射的集束在腔内的传输距离不同造成的。具体来说,激光集束由注入孔进入靶腔,需在靶腔内经过数毫米的传输距离到达腔壁。如图5所示,当靶面离焦距离Δ过大时,DLA透射的各子光束在靶面上互不重合,导致叠加光斑包络发生形变,进而DLA透射子光束在腔内传输过程中逐渐分离,在到达腔壁时互不重合,从而导致腔壁光斑包络形变。

图 5. DLA各子光束在离焦面上的一维光强分布(Δ=3mm)

Fig. 5. One-dimensional intensity distribution of each transmitted sub-beam of DLA on the target plane when Δ=3 mm

下载图片 查看所有图片

在分析了单集束在腔壁上的光强分布后,本课题组进一步计算了所有集束在靶腔壁上的光场分布,以便对腔壁辐照特性进行分析。图6为ISI+DLA宽带激光束匀滑方案的腔壁环带光场分布,可以看出,由于腔壁光斑包络发生形变,不同集束的腔壁光斑在x方向(即柱形腔圆周方向)上的重叠现象明显,严重破坏了腔壁辐照均匀性,并进一步导致内外环能量分布不均衡。此外,内环23.5°入射的集束光斑与外环44.5°入射的集束腔壁光斑之间的交叉重叠进一步导致腔壁热斑出现,使得腔壁辐照均匀性降低。

图 6. 腔壁环带光场分布

Fig. 6. Laser field distribution of laser quad on hohlraum wall

下载图片 查看所有图片

本课题组进一步研究了ISI+DLA宽带激光束匀滑方案的关键参数(主透镜焦距和DLA参数)对腔壁辐照特性的影响,并对ISI+DLA宽带激光束匀滑方案的关键参数进行设计和优化,以改善腔壁辐照均匀性。

3.2 ISI+DLA宽带激光束匀滑方案关键参数的设计及优化

23.5°入射的集束腔壁光斑变形最严重,且与44.5°集束腔壁光斑之间的交叉重叠较明显,因此以内环23.5°入射单集束为例,讨论主透镜焦距以及DLA子透镜数目、子透镜长短轴之比对腔壁光斑光强分布的影响。

3.2.2 主透镜焦距

根据(9)式,在改变主透镜焦距时,需要同比例改变子透镜的焦距,以保证注入孔处的光斑尺寸基本不变。图7给出了不同主透镜焦距下单集束的腔壁光强分布。

图 7. 不同主透镜焦距下集束的腔壁光强分布。(a)f=1.575 m;(b)f=4 m;(c)f=7.7 m

Fig. 7. Intensity distributions of laser quad on the hohlraum wall with different focal lengths of principal lens. (a) f=1.575 m; (b) f=4 m; (c) f=7.7 m

下载图片 查看所有图片

图7可以看出,适当增大主透镜焦距,如将其增大到4 m时,单集束腔壁光斑包络得到明显改善。这是由于主透镜焦距变大,系统“景深”变长,而腔壁的离焦距离未改变,因而激光经ISI+DLA单元分割的各子光束在腔壁上的位置更加集中,腔壁光斑包络得以保持。进一步分析图7(c)可知,当主透镜焦距进一步增大到7.7 m时,光斑出现了大尺度的不均匀性。这是由于在子透镜口径不变的情况下,主透镜焦距过大使得DLA系统的菲涅耳数[23]减小,此时靶面光斑不再具有与近场相近的光场分布,导致腔壁光斑内部引入了大尺度不均匀性。

采用FOPAI[24]和PSD[25]对腔壁光斑的辐照特性进行定量分析,其中,FOPAI为超过阈值强度的峰值热斑与焦斑总功率的比值,PSD表示焦斑的功率谱密度。图8给出了不同主透镜焦距下腔壁光斑的FOPAI和PSD曲线,其中IImean分别为光强和光强均值。

图 8. 不同主透镜焦距下腔壁光斑的FOPAI曲线和PSD曲线。(a)FOPAI曲线;(b)PSD曲线

Fig. 8. FOPAI and PSD curves of laser spots on hohlraum wall with different focal lengths of principal lens. (a) FOPAI curves; (b) PSD curves

下载图片 查看所有图片

图8(a)中可以看出,随着主透镜焦距增大,FOPAI曲线逐渐右移。这表明腔壁光斑的热斑比例变大。分析图8(b)可知,当主透镜焦距增大时,腔壁光斑低空间频率成分的功率占比增大,而中高空间频率成分的功率占比减小。这说明高频不均匀性有所降低。综合考虑后认为,当主透镜焦距设置为4 m时,腔壁光斑包络保持得较好且具有较好的均匀性。

3.2.3 DLA子透镜数目和子透镜长短轴之比

由3.2.1可知,当主透镜焦距增大到4 m时,腔壁光斑包络得到明显改善。接下来在主透镜焦距为4 m的基础上,进一步讨论子透镜数目和子透镜长短轴之比等DLA参数对集束腔壁光强分布的影响。需要说明的是,由(9)式可知,当改变子透镜数目即改变子透镜口径时,子透镜焦距也需同比例改变,以保证注入孔处光斑尺寸基本不变。图9为不同子透镜数目下单集束的腔壁光强分布。

图 9. 不同子透镜数目下集束的腔壁光强分布。(a)6×6;(b)5×5;(c)4×4;(d)3×3

Fig. 9. Intensity distributions of laser quads on hohlraum wall with different sub-lens numbers. (a) 6×6; (b) 5×5; (c) 4×4; (d) 3×3

下载图片 查看所有图片

图9可以看出,适当减少子透镜数目(如5×5)时,集束的腔壁光斑包络及光强均匀性保持得较好。这表明适当减少子透镜数目,即增大子透镜的口径,可在一定程度上缓解衍射带来的腔壁光斑包络的变化。然而,当子透镜数目过少时,如减少到3×3时,光斑中出现了高亮条纹,致使其均匀性降低。这是由于DLA透射子光束在腔壁上衍射图样的不均匀性没有得到充分抹平,同时子透镜数目太少,不能有效补偿近场光束的不均匀性。图10进一步给出了腔壁光斑的FOPAI和PSD曲线。

图 10. 不同子透镜数目下腔壁光斑的FOPAI曲线和PSD曲线。(a)FOPAI曲线;(b)PSD曲线

Fig. 10. FOPAI and PSD curves of laser spots on hohlraum wall with different sub-lens numbers. (a) FOPAI curves; (b) PSD curves

下载图片 查看所有图片

图10(a)可以看出,子透镜数目不同时,集束腔壁光斑中的热斑比例基本相同。分析图10(b)可知,当子透镜数目为5×5时,高空间频率成分的功率占比减小,说明高频不均匀性有所降低。此外,子透镜数目还决定了束匀滑单元引入的总延时,从而影响腔壁匀滑时间。综合考虑,当主透镜焦距为4 m,子透镜数目为5×5时,即子透镜长轴d1=70 mm,短轴d2=49 mm时,可在保持腔壁光斑均匀性的前提下,有效减少束匀滑所需的时间。

由(9)式可知,调整子透镜长短轴之比,可以改变光斑在y方向(即柱形腔圆周方向)的尺寸。图11为子透镜长短轴比例分别为10∶7、10∶8、10∶9、10∶10时集束的腔壁光强分布。

图 11. 不同子透镜长短轴比例下集束的腔壁光强分布。

Fig. 11. Intensity distribution of laser quad on hohlraum wall with different sub-lens long and short axes ratios

下载图片 查看所有图片

图11可以看出,当子透镜长短轴比例变化时,腔壁光斑在y方向的尺寸也会随之改变。不同角度集束在腔壁上的光斑大小不同,因此,可以根据实际情况,针对不同入射角度的集束,合理选择DLA子透镜长短轴之比,以便控制腔壁光斑的尺寸,改善腔壁辐照的均匀性。

综上所述,ISI+DLA宽带激光束匀滑方案关键参数的设计和优化结果如下:当主透镜焦距为4 m时,集束腔壁光斑包络保持得较好并具有较好的均匀性;对于腔壁光斑变形最严重的23.5°入射的集束,DLA子镜数目为5×5时(即子透镜长轴d1=70 mm,短轴d2=49 mm时),可在保持腔壁光斑均匀性的前提下,有效减少宽带激光束匀滑所需的时间。值得指出的是,DLA子透镜长短轴之比可以根据不同入射角度集束在腔壁上的辐照情况进行合理选择,以便控制腔壁光斑的长短轴尺寸,进一步改善腔壁辐照的均匀性。

3.3 腔壁辐照特性优化

基于3.2节所述ISI+DLA宽带激光束匀滑方案关键参数的优化方法及结果,本课题组进一步对所有集束在腔壁上的辐照特性进行了数值模拟。图12为主透镜焦距增大为4 m、子透镜数目减少到5×5时(即子透镜长轴d1=70 mm,短轴d2=49 mm,子透镜焦距为280 m时),内外环所有集束由双端注入柱形腔后的腔壁环带光场分布。

图 12. 主透镜焦距和DLA子透镜数目优化后的腔壁环带光场分布

Fig. 12. Laser field distribution of laser quads on hohlraum wall after adjustment of the number of DLA sub-lens and the focal length of principal lens

下载图片 查看所有图片

图6所示的腔壁环带光场相比,适当增大主透镜焦距和减少子透镜数目后,腔壁上各集束光斑的包络得到明显改善,从而抑制了不同集束腔壁光斑在x方向的交叉重叠,腔壁光场均匀性得到明显改善。然而,进一步分析图12可知,23.5°入射的集束与外环集束之间的交叉重叠依然存在,这会导致热斑出现,进一步产生各种有害的非线性效应,并破坏靶丸的压缩对称性[26]。这种腔壁内外环集束光斑的交叉重叠可以通过适当增大激光集束的入射角度进行有效抑制[15]图13给出了内环集束入射角度由23.5°增大到26°后腔壁的环带光场分布。

图 13. 内环集束入射角度优化后的腔壁环带光场分布

Fig. 13. Laser field distribution of inner laser quad on hohlraum wall after adjusting incident angle of inner laser quads

下载图片 查看所有图片

图13可以看出,内环集束入射角度调整后,腔壁上内外环集束之间的光斑交叉重叠现象得到了显著抑制,热斑明显减少,腔壁光场均匀性得到进一步改善。由3.2节可知,通过适当调整DLA子透镜长短轴之比,可以有效控制靶面光斑在y方向(即柱形腔圆周方向)的尺寸,从而进一步提高腔壁光斑的占空比[27]。从图13可以看出,内环集束以30°入射和以50°入射时的腔壁光斑之间仍存在一定空隙。因此,考虑将外环44.5°和50°入射集束的DLA子透镜长短轴之比分别调整为10∶9和10∶10,即通过增大子透镜短轴的长度来增加腔壁光斑在y方向的长度,进而提高腔壁光斑的占空比。图14给出了外环集束DLA子透镜长短轴比例调整之后的腔壁环带光场分布。

图 14. 外环集束子透镜长短轴比例优化后的腔壁环带光场分布

Fig. 14. Laser field distribution of outer laser quad on hohlraum wall after optimizing sub-lens long and short axes ratio of outer laser quads

下载图片 查看所有图片

图14可以看出,通过调整外环集束DLA子透镜的长短轴比例,可在保证内外环集束腔壁光斑不发生交叠的情况下使外环集束腔壁光斑在y方向的尺寸增加,从而有效增大了激光在腔壁上的辐照面积。表2分别列出了图12图13图14对应的腔壁光斑的占空比(即激光辐照的腔壁面积与腔壁整个环带面积之比)以及腔壁的光通量对比度。

表 2. 腔壁光斑的占空比和光通量对比度

Table 2. Duty ratio and contrast of laser spots on hohlraum wall

No.Duty ratioContrast
1 (Fig.12)0.421.06
2 (Fig.13)0.431.02
3 (Fig.14)0.470.93

查看所有表

表2可以看出,内环集束的入射角度优化后,腔壁光斑的占空比提高,腔壁光通量对比度降低。这表明腔壁辐照均匀性得到了改善。此外,通过优化外环集束DLA子透镜的长短轴比例,腔壁光斑的占空比进一步提高,腔壁光通量的对比度降低,腔壁光场均匀性得到进一步改善。

4 结论

针对NIF装置的光路排布方案和柱形靶腔结构,建立了基于ISI与DLA联用的宽带激光束匀滑方案的靶腔内光传输模型,进而对腔壁辐照特性进行分析和优化。结果表明,主透镜焦距与柱形靶腔参数的不匹配会对不同入射角度集束在腔壁处的光斑包络造成不同程度的破坏,从而导致腔壁光斑交叉重叠,严重破坏腔壁辐照的均匀性。在此基础上,讨论了主透镜焦距以及DLA子透镜数目、子透镜长短轴之比等参数对集束腔壁光强分布的影响,并通过对主透镜焦距以及DLA子透镜数目、子透镜长短轴之比、集束的入射角度等参数进行优化,实现了腔壁辐照均匀性的改善。研究结果表明,适当增大主透镜焦距,可以有效保持不同入射角度集束在腔壁处光斑的包络,从而减轻腔壁光斑的交叉重叠。合理选取DLA的子透镜数目和子透镜长短轴比例,可在保持腔壁光斑均匀性的前提下,有效减少束匀滑所需的时间和提高腔壁光斑的占空比。此外,适当调节内环集束的入射角度,可避免内环与外环集束在腔壁上的交叉重叠。

参考文献

[1] 余诗瀚, 李晓锋, 翁苏明, 等. 激光等离子体不稳定性及其抑制方案研究[J]. 强激光与粒子束, 2021, 33(1): 012006.

    Yu S H, Li X F, Weng S M, et al. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33(1): 012006.

[2] 李平, 王伟, 赵润昌, 等. 基于焦斑空间频率全域优化的偏振匀滑设计[J]. 物理学报, 2014, 63(21): 215202.

    Li P, Wang W, Zhao R C, et al. Polarization smoothing design for improving the whole spatial frequency at focal spot[J]. Acta Physica Sinica, 2014, 63(21): 215202.

[3] Eimerl D, Kruer W L, Campbell E M. Ultrabroad bandwidth for suppression of laser driven parametric instabilities[J]. Comments on Plasma Physics and Controlled Fusion, 1992, 15: 85-104.

[4] Lehmberg R H, Obenschain S P. Use of induced spatial incoherence for uniform illumination of laser fusion targets[J]. Optics Communications, 1983, 46(1): 27-31.

[5] Matsushima I, Owadano Y, Matsumoto Y, et al. Beam smoothing by broadband random-phase irradiation[J]. Optics Communications, 1991, 84(3/4): 175-178.

[6] Matsushima I, Tomie T, Matsumoto Y, et al. Two-dimensional beam smoothing by broadband random-phase irradiation[J]. Optics Communications, 1995, 120(5/6): 299-302.

[7] Veron D, Thiell G, Gouedard C. Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique[J]. Optics Communications, 1993, 97(3/4): 259-271.

[8] Nakano H, Miyanaga N, Yagi K, et al. Partially coherent light generated by using single and multimode optical fibers in a high-power Nd∶glass laser system[J]. Applied Physics Letters, 1993, 63(5): 580-582.

[9] Cui Y, Gao Y Q, Rao D X, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862.

[10] Gao Y Q, Ji L L, Zhao X H, et al. High-power, low-coherence laser driver facility[J]. Optics Letters, 2020, 45(24): 6839-6842.

[11] Campbell E M, Sangster T C, Goncharov V N, et al. Direct-drive laser fusion:status, plans and future[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2189): 20200011.

[12] Dorrer C, Hill E M, Zuegel J D. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 2020, 28(1): 451-471.

[13] 高妍琦, 赵晓晖, 贾果, 等. 基于低相干光的阵列透镜束匀滑技术研究[J]. 物理学报, 2019, 68(7): 075201.

    Gao Y Q, Zhao X H, Jia G, et al. Low-coherece laser based lens array beam smoothing techique[J]. Acta Physica Sinica, 2019, 68(7): 075201.

[14] 肖峻, 吕百达, 翟群. 激光间接驱动聚变柱形腔靶内壁光斑参数计算[J]. 强激光与粒子束, 1998, 10(1): 63-66.

    Xiao J, Lü B D, Zhai Q. Calculation of laser spot parameters on wall of cylindrical hohlraum for laser indirect driven fusion[J]. High Power Laser and Particle Beams, 1998, 10(1): 63-66.

[15] 侯鹏程, 钟哲强, 文萍, 等. 激光间接驱动柱形腔壁辐照特性[J]. 红外与激光工程, 2016, 45(11): 1106001.

    Hou P C, Zhong Z Q, Wen P, et al. Irradiation characteristics of laser quads on cylindrical hohlraum wall in indirect-drive facility[J]. Infrared and Laser Engineering, 2016, 45(11): 1106001.

[16] 陈明玉. 激光在间接驱动靶腔壁上的投影焦斑分布特性[D]. 泉州:华侨大学,2016.

    ChenM Y. Focal spots distribution characteristics of lasers projecting in hohlraum wall in direct driven[D]. Quanzhou: Huaqiao University, 2016.

[17] Glenzer S H, MacGowan B J, Michel P, et al. Symmetric inertial confinement fusion implosions at ultra-high laser energies[J]. Science, 2010, 327(5970): 1-3.

[18] Deng X M, Liang X C, Chen Z Z, et al. Uniform illumination of large targets using a lens array[J]. Applied Optics, 1986, 25(3): 377.

[19] Haan S W, Lindl J D, Callahan D A, et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the national ignition facility[J]. Physics of Plasmas, 2011, 18(5): 051001.

[20] 文萍, 李泽龙, 钟哲强, 等. 间接驱动装置中柱形腔内激光束传输叠加特性研究[J]. 光学学报, 2016, 36(1): 0114001.

    Wen P, Li Z L, Zhong Z Q, et al. Study on propagation characteristics of laser quads in cylindrical hohlraum for indirect drive facility[J]. Acta Optica Sinica, 2016, 36(1): 0114001.

[21] Zhao X H, Gao Y Q, Li F J, et al. Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence[J]. Applied Optics, 2019, 58(8): 2121-2126.

[22] 丘悦, 钱列加, 黄宏一, 等. 用消衍射方法改善透镜列阵的辐照均匀性[J]. 中国激光, 1995, 22(1): 27-31.

    Qiu Y, Qian L J, Huang H Y, et al. Improve illumination uniformity by suppressing the diffraction of a lens array[J]. Chinese Journal of Lasers, 1995, 22(1): 27-31.

[23] 郑建洲, 于清旭. 二维正交柱透镜列阵光学系统及优化设计[J]. 光电工程, 2006, 33(7).

    Zheng J Z, Yu Q X. Optics system of two dimensional orthogonal cylindrical lens arrays and optimizing design[J]. Opto-Electronic Engineering, 2006, 33(7).

[24] 黄媛, 张寅瑞, 钟哲强, 等. 基于涡旋圆偏振光干涉的偏振快速旋转束匀滑方案[J]. 中国激光, 2020, 47(9): 0905003.

    Huang Y, Zhang Y R, Zhong Z Q, et al. Rapid polarization rotation smoothing scheme based on interference of circularly polarized vortex beamlets[J]. Chinese Journal of Lasers, 2020, 47(9): 0905003.

[25] 杨钧兰, 钟哲强, 翁小凤, 等. 惯性约束聚变装置中靶面光场特性的统计表征方法[J]. 物理学报, 2019, 68(8): 084207.

    Yang J L, Zhong Z Q, Weng X F, et al. Method of statistically characterizing target plane light field properties in inertial confinement fusion device[J]. Acta Physica Sinica, 2019, 68(8): 084207.

[26] MacGowan B J, Afeyan B B, Back C A, et al. Laser-plasma interactions in ignition-scale hohlraum plasmas[J]. Physics of Plasmas, 1996, 3(5): 2029-2040.

[27] 侯鹏程, 钟哲强, 文萍, 等. 激光间接驱动球形腔新型光路排布方案[J]. 物理学报, 2016, 65(2): 024202.

    Hou P C, Zhong Z Q, Wen P, et al. A novel arrangement scheme of laser quads for spherical hohlraum in laser indirect-driven facility[J]. Acta Physica Sinica, 2016, 65(2): 024202.

张鑫, 熊皓, 钟哲强, 张彬. 诱导空间非相干和消衍射透镜阵列联用方式束匀滑方案的腔壁辐照特性分析及优化[J]. 中国激光, 2022, 49(4): 0405002. Xin Zhang, Hao Xiong, Zheqiang Zhong, Bin Zhang. Analysis and Optimization of Irradiation Characteristics of Laser Quads on Hohlraum Wall Based on Broadband Laser Beams Smoothed Using Induced Spatial Incoherence and De-Diffraction Lens Array[J]. Chinese Journal of Lasers, 2022, 49(4): 0405002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!