中国激光, 2016, 43 (5): 0504001, 网络出版: 2016-05-04   

基于粒子群优化算法的生物组织固有荧光光谱复原方法

Intrinsic Tissue Fluorescence Spectrum Recovery Based on Particle Swarm Optimization Algorithm
作者单位
1 中国科学院合肥物质科学研究院应用技术研究所安徽省生物医学光学仪器工程技术研究中心, 安徽 合肥 230031
2 皖江新兴产业技术发展中心, 安徽 铜陵 244000
摘要
为减少吸收和散射对生物组织荧光光谱的干扰,使用蒙特卡罗(MC)方法模拟不同光学参数下的生物组织荧光和漫反射光,提出基于组织漫反射光谱的荧光复原方法。将复原算法中的经验参数编码为解空间中的一个粒子,以组织荧光临床应用效果作为适应值,构建粒子群优化(PSO)算法实现经验参数优化。利用已建立的用于糖尿病无创筛查的组织光谱测量系统,收集327例受试者的皮肤组织荧光光谱和漫反射光谱,使用基于PSO的组织荧光复原算法进行光谱复原。以复原前、后的组织荧光光谱强度作为输入变量进行受试者工作特性(ROC)曲线分析,观察其在糖尿病筛查中的应用价值。结果显示,采用复原前的组织荧光光谱作为输入变量用于糖尿病筛查时,ROC曲线覆盖面积为0.54,最佳诊断点对应的敏感性为32%、特异性为76%;以复原后的组织荧光光谱作为输入变量时,ROC曲线覆盖面积为0.86,最佳诊断点对应的敏感性和特异性分别为72%、86%。上述结果表明,使用基于PSO的组织固有荧光光谱复原算法能有效提高组织荧光光谱的临床应用价值。
Abstract
In order to reduce the influence of absorption and scattering on tissue fluorescence spectra, the tissue fluorescence and diffuse reflection are simulated under different optical parameters with the Monte Carlo (MC) method, and a fluorescence recovery algorithm based on the tissue diffuse reflection spectrum is proposed. The empirical parameters in the proposed algorithm are coded as a particle in the solution domain, the classification performance is defined as fitness, and then a particle swarm optimization (PSO) algorithm is established to optimize empirical parameters. Skin fluorescence and diffuse reflection spectra of 327 subjects are collected with a tissue detection system for noninvasive screening of diabetes. The fluorescence spectra are recovered by the empirical approach, and the fluorescence intensity before and after recovery is selected as the input variable for the receiver operating characteristic (ROC) curve analysis, which is applied to evaluating the classification performance in diabetes screening. The sensitivity and specificity are 32% and 76% respectively, and the area under the ROC curve is 0.54 when the spectra before recovery are used, while the sensitivity and specificity are 72% and 86% respectively, and the area under the ROC curve is 0.86 when the spectra after recovery are used. The results indicate that using the tissue fluorescence spectrum recovery algorithm based on PSO can improve the application of tissue fluorescence spectroscopy effectively.
参考文献

[1] Kanick S C, Davis S C, Zhao Y, et al.. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis[J]. Journal of Biomedical Optics, 2014, 19(7): 075002.

[2] Bradley R S, Thorniley M S. A review of attenuation correction techniques for tissue fluorescence[J]. Journal of the Royal Society Interface, 2006, 3(6): 1-13.

[3] Brooks S, Hoy C L, Amelink A, et al.. Sources of variability in the quantification of tissue optical properties by multidiameter single-fiber reflectance and fluorescence spectroscopy[J]. Journal of Biomedical Optics, 2015, 20(5): 057002.

[4] Liu C B, Rajaram N, Vishwanath K, et al.. Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model[J]. Journal of Biomedical Optics, 2012, 17(7): 077012.

[5] 贾浩, 陈斌, 李东, 等. 模拟皮肤组织中光传播的非结构化网格蒙特卡罗法[J]. 中国激光, 2015, 42(4): 0404001.

    Jia Hao, Chen Bin, Li Dong, et al.. Unstructured grid based Monte Carlo method for the simulation of light propagation in skin tissues[J]. Chinese J Lasers, 2015, 42(4): 0404001.

[6] Valdés S P, Leblond F, Kim A, et al.. A spectrally constrained dual-band normalization technique for protoporphyrin IX quantification in fluorescence-guided surgery[J]. Optics Letters, 2012, 37(11): 1817-1819.

[7] 甄洁, 王颖, 王成铭, 等. 应用光学相干层析术研究光动力治疗鲜红斑痣前后皮肤结构和光学参数的变化[J]. 中国激光, 2015, 42(6): 0604001.

    Zhen Jie, Wang Ying, Wang Chengming, et al.. Research on the structure and optical parameter changes of port wine stain after photodynamic therapy based on optical coherence tomography[J]. Chinese J Lasers, 2015, 42(6): 0604001.

[8] 潘津津, 焦学军, 焦典, 等. 利用功能性近红外光谱法研究大脑皮层血氧情况随任务特征变化规律[J]. 光学学报, 2015, 35(8): 0817001.

    Pan Jinjin, Jiao Xuejun, Jiao Dian, et al.. Study on variation in cortex oxygen with task features using functional near-infrared spectroscopy[J]. Acta Optica Sinica, 2015, 35(8): 0817001.

[9] Kanick S C, Robinson D J, Sterenborg H J, et al.. Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium[J]. Optics Letters, 2012, 37(5): 948-950.

[10] Jacques S L. Optical properties of biological tissues: A review[J]. Physics in Medicine and Biology, 2013, 58(11): R37-R61.

[11] Poli R, Kennedy J, Blackwell T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57.

[12] Kennedy J. Particle swarm optimization[M]. //Encyclopedia of machine learning. Heidelberg: Springer, 2010: 760-766.

[13] 王泽兵, 杨卫, 秦丽. 基于粒子群算法的动态热释电目标跟踪[J]. 光学学报, 2014, 34(10): 1004001.

    Wang Zebing, Yang Wei, Qin Li. Target tracking based on particle swarm optimization using dynamic pyroelectric infrared sensor[J]. Acta Optica Sinica, 2014, 34(10): 1004001.

[14] 王书涛, 陈东营, 魏蒙, 等. 荧光光谱法和PSO-BP神经网络在山梨酸钾浓度检测中的应用[J]. 中国激光, 2015, 42(5): 0515004.

    Wang Shutao, Chen Dongying, Wei Meng, et al.. Application of fluorescence spectroscopy and PSO-BP neural network in the detection of potassium sorbate concentration[J]. Chinese J Lasers, 2015, 42(5): 0515004.

[15] Hull E, Ediger M, Unione A, et al.. Noninvasive, optical detection of diabetes: Model studies with porcine skin[J]. Optics Express, 2004, 12(19): 4496-4510.

[16] Meerwaldt R, Links T, Graaff R, et al.. Simple noninvasive measurement of skin autofluorescence[J]. Annals of the New York Academy of Sciences, 2005, 1043(1): 290-298.

[17] Colagiuri S, Hussain Z, Zimmet P, et al.. Screening for type 2 diabetes and impaired glucose metabolism: The Australian experience[J]. Diabetes Care, 2004, 27(2): 367-371.

[18] Smit A J, Smit J M, Botterblom G J, et al.. Skin autofluorescence based decision tree in detection of impaired glucose tolerance and diabetes[J]. PLoS ONE, 2013, 8(6): e65592.

[19] Zhang Y Z, Zhu L, Wang Y K, et al.. Classification of skin autofluorescence spectrum using support vector machine in type 2 diabetes screening[J]. Journal of Innovative Optical Health Sciences, 2013, 6(4): 1350036.

[20] 李飞, 王贻坤, 朱灵, 等. 基于神经网络模式识别的糖尿病无创风险评估方法研究[J]. 光谱学与光谱分析, 2014, 34(5): 1327-1331.

    Li Fei, Wang Yikun, Zhu Ling, et al.. Research on noninvasive risk evaluation of diabetes mellitus based on neural network pattern recognition[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1327-1331.

张元志, 刘勇, 候华毅, 朱灵, 王安, 王贻坤. 基于粒子群优化算法的生物组织固有荧光光谱复原方法[J]. 中国激光, 2016, 43(5): 0504001. Zhang Yuanzhi, Liu Yong, Hou Huayi, Zhu Ling, Wang An, Wang Yikun. Intrinsic Tissue Fluorescence Spectrum Recovery Based on Particle Swarm Optimization Algorithm[J]. Chinese Journal of Lasers, 2016, 43(5): 0504001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!