Photonics Research, 2017, 5 (6): 06000649, Published Online: Dec. 7, 2017  

Experimental evidence of Bloch surface waves on photonic crystals with thin-film LiNbO3 as a top layer Download: 528次

Author Affiliations
1 Département d’Optique P. M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, 25030 Besan?on Cedex, France
2 Optics & Photonics Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, Neuchatel CH-2000, Switzerland
Copy Citation Text

Tatiana Kovalevich, Djaffar Belharet, Laurent Robert, Myun-Sik Kim, Hans Peter Herzig, Thierry Grosjean, Maria-Pilar Bernal. Experimental evidence of Bloch surface waves on photonic crystals with thin-film LiNbO3 as a top layer[J]. Photonics Research, 2017, 5(6): 06000649.

References

[1] ToneyJ. E., Lithium Niobate Photonics (Artech House, 2015).

[2] W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, H. Suche. Integrated optical devices in lithium niobate. Opt. Photon. News, 2008, 19(1): 24-31.

[3] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, R. P. Gunter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics, 2007, 1: 407-410.

[4] P. Yeh, A. Yariv, L. Sun, C. S. Hong. Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am., 1977, 67: 423-438.

[5] T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H. P. Herzig, M. P. Bernal. Polarization controlled directional propagation of Bloch surface wave. Opt. Express, 2017, 25: 5710-5715.

[6] V. N. Konopsky, E. V. Alieva. Photonic crystal surface waves for optical biosensors. Anal. Chem., 2007, 79: 4729-4735.

[7] R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, H. P. Herzig. Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform. J. Eur. Opt. Soc., 2017, 13: 5.

[8] A. Gerthoffer, C. Guyot, W. Qiu, A. Ndao, M. P. Bernal, N. Courjal. Strong reduction of propagation losses in LiNbO3 ridge waveguides. Opt. Mater., 2014, 38: 37-41.

[9] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. Martin, F. Giorgis. Guided Bloch surface waves on ultrathin polymeric ridges. Nano Lett., 2010, 10: 2087-2091.

[10] F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, F. Geobaldo. Fast optical vapour sensing by Bloch surface waves on porous silicon membranes. Phys. Chem. Chem. Phys., 2010, 12: 502-506.

[11] A. Sinibaldi, A. Fieramosca, R. Rizzo, A. Anopchenko, N. Danz, P. Munzert, C. Magistris, C. Barolo, F. Michelotti. Combining label-free and fluorescence operation of Bloch surface wave optical sensors. Opt. Lett., 2014, 39: 2947-2950.

[12] L. Yu, B. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, H. P. Herzig. Manipulating Bloch surface waves in 2D: a platform concept-based flat lens. Light Sci. Appl., 2014, 3: e124.

[13] R. L. Puurunen. A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy. Chem. Vap. Deposition, 2014, 20: 332-344.

[14] HäyrinenN.RousseyM.BeraA.KuittinenM.HonkanenS., “Atomic layer re-deposition for nanoscale devices,” in Encyclopedia of Plasma Technology, Leon ShohetJ., ed. (Taylor & Francis/CRC Press, 2015).

[15] G. Lucovsky, D. V. Tsu. Plasma enhanced chemical vapor deposition: differences between direct and remote plasma excitation. J. Vac. Sci. Technol. A, 1987, 5: 2231-2238.

[16] T. Kovalevich, A. Ndao, M. Suarez, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, M. P. Bernal. Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films. Opt. Lett., 2016, 41: 5616-5619.

[17] M. Roussey, M. P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett., 2006, 89: 241110.

[18] V. N. Konopsky, E. V. Alieva, S. T. Alyatkin, A. A. Melnikov, S. V. Chekalin, V. M. Agranovich. Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals. Light Sci. Appl., 2016, 5: e16168.

[19] A. D. Bezpaly, V. M. Shandarov. Optical formation of waveguide elements in photorefractive surface layer of a lithium niobate sample. Phys. Procedia, 2017, 86: 166-169.

[20] V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, L. McCaughan. New methods for fabricating patterned lithium niobate for photonic applications. J. Cryst. Growth, 2003, 259: 273-278.

[21] H. Han, L. Cai, H. Hu. Optical and structural properties of single-crystal lithium niobate thin film. Opt. Mater., 2015, 42: 47-51.

[22] F. Bassignot, E. Courjon, S. Ballandras, J. M. Lesage, R. Petit. Acoustic resonator based on periodically poled transducers: fabrication and characterization. J. Appl. Phys., 2012, 112: 074108.

[23] C. B. Labelle, V. M. Donnelly, G. R. Bogart, R. L. Opila, A. Kornblit. Investigation of fluorocarbon plasma deposition from cC4F8 for use as passivation during deep silicon etching. J. Vac. Sci. Technol. A, 2004, 22: 2500-2507.

[24] LaermerF.SchilpA., “Method of anisotropically etching silicon,” U.S. patent5,501,893 (March26, 1996).

[25] V. N. Konopsky. Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces. New J. Phys., 2010, 12: 093006.

[26] R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, H. P. Herzig. Near-field characterization of a Bloch-surface-wave-based 2D disk resonator. Opt. Lett., 2016, 41: 4867-4870.

Tatiana Kovalevich, Djaffar Belharet, Laurent Robert, Myun-Sik Kim, Hans Peter Herzig, Thierry Grosjean, Maria-Pilar Bernal. Experimental evidence of Bloch surface waves on photonic crystals with thin-film LiNbO3 as a top layer[J]. Photonics Research, 2017, 5(6): 06000649.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!