光学 精密工程, 2016, 24 (9): 2248, 网络出版: 2016-11-14   

叠堆式压电陶瓷驱动器的复合控制

Feed-forward control of stack piezoelectric actuator
作者单位
1 华东理工大学 机械与动力工程学院, 上海 200237
2 美国哥伦比亚大学 机械工程系, 美国 纽约 10027
3 萨斯喀彻温大学 机械工程系, 加拿大 萨斯卡通 250101
摘要
提出了逆Bouc-Wen前馈控制与反馈控制相结合的复合控制算法, 用于改善压电陶瓷驱动器对目标轨迹的跟踪性能。建立了压电陶瓷驱动器的Bouc-Wen迟滞动力学模型, 并用粒子群算法(PSO)对该模型的参数进行识别。基于Bouc-Wen迟滞模型, 提出了逆Bouc-Wen前馈补偿控制。最后, 为消除迟滞模型的不确定性, 引入比例积分(PI)反馈控制, 并与前馈补偿控制构成复合控制算法。建立了基于dSPACE实时系统的压电陶瓷驱动实验平台, 迟滞实验结果表明: 压电陶瓷的迟滞误差量几乎为0, 线性度高达96.5%; 目标轨迹跟踪实验结果表明: 复合控制算法的最大跟踪误差为0.180 5 μm, 均方根(RMS-Root mean square)跟踪误差为0.055 4 μm, 跟踪精度达到了10-8 m。相比于开环控制、前馈控制及PI反馈控制, 提出的复合控制算法能够基本消除压电陶瓷的迟滞非线性, 同时具有很好的轨迹跟踪性能。
Abstract
A novel inverse feedforward control algorithm was developed based on inverse Bouc-Wen feed-forward control and feedback control for improving the trajectory tracking performance of a Piezoelectric Actuator (PEA). A Bouc-Wen hysteresis dynamic modeling for the PEA was established, and system parameters of the Bouc-Wen model were identified by Particle Swarm Optimization (PSO) method. Then, a feed-forward compensation control method was proposed based on hysteresis Bouc-Wen model. Finally, the inverse feed-forward control method combining the PI feedback control with feed-forward control were proposed to control the piezoelectric actuator. An experimental platform was developed based on dSPACE system. The hysteresis experiment results show that the hysteresis error and relative linearity of the proposed method is almost zero and 96.5%, respectively. The trajectory tracking experimental results show that the maximum tracking error and RMS tracking error of the proposed method are 0.180 5 μm and 0.055 4 μm, respectively, obtaining the high tracking performance by 10-8 m. As compared with open loop control, feedforward control, PI feedback control, the proposed inverse feedforward control algorithm compensates basically hysteresis nonlinearity of the PEAs and shows good trajectory tracking performance.
参考文献

[1] OUYANG P R, ZHANG W J, MADAN M, et al.. Overview of the development of a visual based automated bio micro-manipulation system [J]. Mechatronics, 2007, 17: 578-588.

[2] LIU Y, LI J, HU X, et al.. Modeling and control of piezoelectric inertia-friction actuators: review and future research directions [J]. Mechanical Science, 2015, 6: 95-107.

[3] 范伟, 林瑜阳, 李钟慎. 压电陶瓷驱动器的迟滞特性[J]. 光学 精密工程, 2016, 24(5).

    FAN W, LIN Y Y, LI ZH SH. Hysteresis characteristics of piezoelectric ceramic actuators [J]. Opt. Precision Eng., 2016, 24(5).(in Chinese)

[4] MAIN J A, GARCIA E, NEWTON D V. Precision position control of piezoelectric actuators using charge feedback [J]. Journal of Guidance Control and Dynamic, 1995, 18: 1068-1073.

[5] LIEN S, MIN S. Precision tracking of a piezo-driven stage by charge feedback control [J]. Precision Engineering, 2013, 37: 793-804.

[6] LIN CH J, LIN P T. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model [J]. Computers and Mathematics with Applications, 2012, 64: 766-787.

[7] CAO Y, CHEN, X B. A survey of modeling and control issues for piezo-electric actuators [J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(1).

[8] XIAO S, LI Y. Dynamic compensation and H∞ control for piezoelectric actuators based on the inverse Bouc-Wen mode [J]. Robotics and computer Integrated Manufacturing, 2014, 30: 47-54.

[9] 王耿, 官春林, 张小军, 等. 应变式微型精密压电驱动器的一体化设计及其PID控制[J]. 光学 精密工程, 2013, 21(3): 709-716.

    WANG G, GUAN C L, ZHANG X J, et al.. Design and control of miniature piezoelectric actuator based on strain gauge sensor [J]. Opt. Precision Eng., 2013, 21(3): 709-716. (in Chinese)

[10] LI Y M, XU Q S. Adaptive sliding mode control with perturbation estimation and pid sliding surface for motion tracking of a piezo-driven micromanipulator [J].IEEE Transactions on Control Systems Technology, 2010, 18(4): 798-810.

[11] LIN C Y, CHEN P Y. Precision tracking control of a biaxial piezo stage using repetitive control and double feedforward compensation [J]. Mechatronic, 2011, 21: 239-249.

[12] MA L, LI W, WANG Q, et al.. Identification of the bouc-wen hysteresis model for piezoelectric actuated micro/nano electromechanical system [J]. Journal of Computational and Theoretical Nano-science, 2013, 10(4).

[13] 李华丰, 赵新丽. 应变反馈式压电陶瓷微位移驱动器的研制[J]. 计测技术, 2005, 25(4): 19-20.

    LI H F, ZHAO X L. Piezo actuators with strain gage sensors [J]. Measurement Technology, 2005, 25(4): 19-20. (in Chinese)

[14] 王代华, 朱伟. WTYD型压电陶瓷微位移器的迟滞特性建模与实验验证[J]. 光学 精密工程, 2010, 18(1): 205-211.

    WANG D H, ZHU W. Hysteretic modeling and experimental verification for WTYD type piezo ceramic micro-actuators [J]. Opt. Precision Eng., 2010, 18(1): 205-211. (in Chinese)

[15] CHEN X, LI Y. A modified PSO structure resulting in high exploration ability with convergence guaranteed [J]. IEEE Transaction on Cybernetics, 2007, 37(5): 1271-1289.

刘长利, 胡守柱, 郭海林, 王学军, 章文俊. 叠堆式压电陶瓷驱动器的复合控制[J]. 光学 精密工程, 2016, 24(9): 2248. LIU Chang-li, HU Shou-zhu, GUO Hai-lin, WANG Xue-jun, ZHANG Wen-jun. Feed-forward control of stack piezoelectric actuator[J]. Optics and Precision Engineering, 2016, 24(9): 2248.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!