中国激光, 2020, 47 (7): 0701016, 网络出版: 2020-07-10   

1.3 μm半导体量子点激光器的研究进展 下载: 2224次特邀综述

Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers
吕尊仁 1,2张中恺 1,2王虹 1,2丁芸芸 1,2杨晓光 1,2孟磊 1,2柴宏宇 1,2杨涛 1,2,*
作者单位
1 中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083
2 中国科学院大学材料与光电研究中心, 北京 100049
引用该论文

吕尊仁, 张中恺, 王虹, 丁芸芸, 杨晓光, 孟磊, 柴宏宇, 杨涛. 1.3 μm半导体量子点激光器的研究进展[J]. 中国激光, 2020, 47(7): 0701016.

Lü Zunren, Zhang Zhongkai, Wang Hong, Ding Yunyun, Yang Xiaoguang, Meng Lei, Chai Hongyu, Yang Tao. Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701016.

参考文献

[1] 朱晓农, 包文霞. 超短脉冲激光及其相关应用的一些基本知识[J]. 中国激光, 2019, 46(12): 1200001.

    Zhu X N, Bao W X. Fundamentals of ultrashort pulse laser and its applications[J]. Chinese Journal of Lasers, 2019, 46(12): 1200001.

[2] 彭滟, 施辰君, 朱亦鸣, 等. 太赫兹光谱技术在生物医学检测中的定性与定量分析算法[J]. 中国激光, 2019, 46(6): 0614002.

    Peng Y, Shi C J, Zhu Y M, et al. Qualitative andquantitative analysis algorithms based on terahertz spectroscopy for biomedical detection[J]. Chinese Journal of Lasers, 2019, 46(6): 0614002.

[3] 张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾[J]. 中国激光, 2019, 46(1): 0100003.

    Zhang X M, Wei X F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 2019, 46(1): 0100003.

[4] 王健, 刘俊, 赵一凡. 结构光场编译码通信研究进展[J]. 光学学报, 2019, 39(1): 0126013.

    Wang J, Liu J, Zhao Y F. Research progress of structured light coding/decoding communications[J]. Acta Optica Sinica, 2019, 39(1): 0126013.

[5] 宋跃辉, 周煜东, 汪丽, 等. 基于半导体激光器的780 nm高光谱分辨率激光雷达系统设计[J]. 中国激光, 2019, 46(10): 1001006.

    Song Y H, Zhou Y D, Wang L, et al. Design of 780-nm high spectral resolution lidar based on laser diode[J]. Chinese Journal of Lasers, 2019, 46(10): 1001006.

[6] 王俊, 高欣, 冯展祖, 等. 空间光通信用量子点激光器辐射损伤效应研究[J]. 真空与低温, 2019, 25(1): 41-45.

    Wang J, Gao X, Feng Z Z, et al. Radiation damage effect of quantum dot laser with space optical communication[J]. Vacuum and Cryogenics, 2019, 25(1): 41-45.

[7] AIOCORE. Next generation silicon photonics transceiver[EB/OL]. ( 2019-03-12)[2020-02-11]. http:∥aiocore.com/.

[8] Asryan L V, Suris R A. Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser[J]. Semiconductor Science and Technology, 1996, 11(4): 554-567.

[9] Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current[J]. Applied Physics Letters, 1982, 40(11): 939-941.

[10] 徐鹏飞. 通信波段1.3 μm InAs/GaAs量子点激光器特性研究[D]. 北京: 中国科学院研究生院, 2012: 3- 4.

    Xu PF. The research of 1.3 μm InAs/GaAs quantum dot lasers for optical communication[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012: 3- 4.

[11] Miyamoto Y, Cao M, Shingai Y, et al. Light emission from quantum-box structure by current injection[J]. Japanese Journal of Applied Physics, 1987, 26: L225-L227.

[12] Nötzel R. Self-organized growth of quantum-dot structures[J]. Semiconductor Science and Technology, 1996, 11(10): 1365-1379.

[13] Kirstaedter N, Grundmann M, Richter U, et al. Low threshold, large to injection laser emission from (InGa)As quantum dots[J]. Electronics Letters, 1994, 30(17): 1416-1417.

[14] Huffaker D L, Park G, Zou Z, et al. 1.3 μm room-temperature GaAs-based quantum-dot laser[J]. Applied Physics Letters, 1998, 73(18): 2564-2566.

[15] Chand N. Becker E, van der Ziel J P, et al. Excellent uniformity and very low (<50 A/cm 2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate[J]. Applied Physics Letters, 1991, 58(16): 1704-1706.

[16] Turner G W, Choi H K, Manfra M J. Ultralow-threshold (50 A/cm 2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm[J]. Applied Physics Letters, 1998, 72(8): 876-878.

[17] Huffaker D L, Deppe D G. Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 1999, 11(8): 934-936.

[18] Liu G, Stintz A, Li H, et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well[J]. Electronics Letters, 1999, 35(14): 1163-1165.

[19] Liu G T, Stintz A, Li H, et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures[J]. IEEE Journal of Quantum Electronics, 2000, 36(11): 1272-1279.

[20] Liu H Y, Sellers I R, Badcock T J, et al. Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer[J]. Applied Physics Letters, 2004, 85(5): 704-706.

[21] Sellers I R, Liu H Y, Groom K M, et al. 1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density[J]. Electronics Letters, 2004, 40(22): 1412-1413.

[22] Liu H Y, Childs D T, Badcock T J, et al. High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents[J]. IEEE Photonics Technology Letters, 2005, 17(6): 1139-1141.

[23] Liu C Y, Yoon S F, Cao Q, et al. Low transparency current density and high temperature operation from ten-layer p-doped 1.3 μm InAs/InGaAs/GaAs quantum dot lasers[J]. Applied Physics Letters, 2007, 90(4): 041103.

[24] Freisem S, Ozgur G, Shavritranuruk K, et al. Very-low-threshold current density continuous-wave quantum-dot laser diode[J]. Electronics Letters, 2008, 44(11): 679-681.

[25] Deppe D G, Shavritranuruk K, Ozgur G, et al. Quantum dot laser diode with low threshold and low internal loss[J]. Electronics Letters, 2009, 45(1): 54-56.

[26] Lü Z, Zhang Z K, Yang X G, et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping[J]. Applied Physics Letters, 2018, 113(1): 011105.

[27] Lester L F, Stintz A, Li H, et al. Optical characteristics of 1.24-μm InAs quantum-dot laser diodes[J]. IEEE Photonics Technology Letters, 1999, 11(8): 931-933.

[28] Shchekin O B, Ahn J, Deppe D G. High temperature performance of self-organised quantum dot laser with stacked p-doped active region[J]. Electronics Letters, 2002, 38(14): 712-713.

[29] Shchekin O B, Deppe D G. 1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 ℃[J]. Applied Physics Letters, 2002, 80(18): 3277-3279.

[30] Shchekin O B, Deppe D G. Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region[J]. IEEE Photonics Technology Letters, 2002, 14(9): 1231-1233.

[31] Deppe D G, Huang H, Shchekin O B. Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed[J]. IEEE Journal of Quantum Electronics, 2002, 38(12): 1587-1593.

[32] Fathpour S, Mi Z T, Bhattacharya P, et al. The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers[J]. Applied Physics Letters, 2004, 85(22): 5164-5166.

[33] Ishida M, Hatori N, Otsubo K, et al. Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3 μm quantum dot lasers between 20 and 90 ℃[J]. Electronics Letters, 2007, 43(4): 219-221.

[34] Jin C Y, Badcock T J, Liu H Y, et al. Observation and modeling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser[J]. IEEE Journal of Quantum Electronics, 2006, 42(12): 1259-1265.

[35] Badcock T J, Royce R J, Mowbray D J, et al. Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers[J]. Applied Physics Letters, 2007, 90(11): 111102.

[36] KageyamaT, NishiK, YamaguchiM, et al. Extremely high temperature (220 ℃) continuous-wave operation of 1300-nm-range quantum-dot lasers[C]∥2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), May 22-26, 2011, Munich, Germany. New York: IEEE, 2011: 12248755.

[37] Gready D, Eisenstein G, Gioannini M, et al. On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers[J]. Applied Physics Letters, 2013, 102(10): 101107.

[38] Asryan L V, Suris R A. Upper limit for the modulation bandwidth of a quantum dot laser[J]. Applied Physics Letters, 2010, 96(22): 221112.

[39] Shchekin O B, Deppe D G. The role of p-type doping and the density of states on the modulation response of quantum dot lasers[J]. Applied Physics Letters, 2002, 80(15): 2758-2760.

[40] Su H, Zhang L, Gray A L, et al. High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers[J]. IEEE Photonics Technology Letters, 2003, 15(11): 1504-1506.

[41] Todaro M T, Salhi A, Fortunato L, et al. High-performance directly modulated 1.3-μm undoped InAs-InGaAs quantum-dot lasers[J]. IEEE Photonics Technology Letters, 2007, 19(4): 191-193.

[42] Otsubo K, Hatori N, Ishida M, et al. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments[J]. Japanese Journal of Applied Physics, 2004, 43(8): 1124-1126.

[43] Fathpour S, Mi Z, Bhattacharya P. Small-signal modulation characteristics of p-doped 1.1- and 1.3-μm quantum-dot lasers[J]. IEEE Photonics Technology Letters, 2005, 17(11): 2250-2252.

[44] Mi Z T, Bhattacharya P, Fathpour S. High-speed 1.3 μm tunnel injection quantum-dot lasers[J]. Applied Physics Letters, 2005, 86(15): 153109.

[45] Kim S M, Wang Y, Keever M, et al. High-frequency modulation characteristics of 1.3-μm InGaAs quantum dot lasers[J]. IEEE Photonics Technology Letters, 2004, 16(2): 377-379.

[46] Terry N, Naderi N, Pochet M, et al. Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser[J]. Electronics Letters, 2008, 44(15): 904-905.

[47] Sugawara M, Usami M. Quantum dot devices: handling the heat[J]. Nature Photonics, 2009, 3(1): 30-31.

[48] TanakaY, IshidaM, TakadaK, et al. 25 Gbps direct modulation in 1.3-μm InAs/GaAs high-density quantum dot lasers[C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California, United States. Washington, D.C.: OSA, 2010: CTuZ1.

[49] TanakaY, TakadaK, IshidaM, et al. High-speed modulation in 1.3-μm InAs/GaAs high-density quantum dot lasers[C]∥Asia Communications and Photonics Conference and Exhibition, December 8-12, 2010, Shanghai, China. New York: IEEE, 2010: 577- 578.

[50] IshidaM, MatsudaM, TanakaY, et al. Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers[C]∥Conference on Lasers and Electro-Optics 2012, May 6-11, 2012, San Jose, California, United States. Washington, D.C.: OSA, 2012: CM1I. 2.

[51] Ji H M, Yang T, Cao Y L, et al. A 10 Gb/s directly-modulated 1.3 μm InAs/GaAs quantum-dot laser[J]. Chinese Physics Letters, 2010, 27(3): 034209.

[52] O'Brien D. Hegarty S P, Huyet G, et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers[J]. Electronics Letters, 2003, 39(25): 1819.

[53] He YM, Zhang ZK, LüZ, et al. Modulation performance comparison of quantum-dot and quantum-well lasers under external feedback[C]∥2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), July 7-11, 2019, Fukuoka, Japan. New York: IEEE, 2019: 19009854.

[54] MizutaniK, YashikiK, KuriharaM, et al. Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser[C]∥2015 European Conference on Optical Communication (ECOC), September 27-October 1, 2015, Valencia, Spain. New York: IEEE, 2015: 15635867.

[55] HuangH, SchiresK, Lin LC, et al. Dynamics of excited-state InAs/GaAs Fabry-Perot quantum-dot lasers under optical feedback[C]∥2016 Conference on Lasers and Electro-Optics (CLEO), June 5-10, 2016, San Jose, CA, USA. New York: IEEE, 2016: 16543333.

[56] Huang H M, Lin L, Chen C, et al. Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes[J]. Optics Express, 2018, 26(2): 1743-1751.

[57] Lin L, Chen C, Huang H M, et al. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states[J]. Optics Letters, 2018, 43(2): 210-213.

[58] Zhou Y G, Zhao X, Cao C F, et al. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium[J]. Optics Express, 2018, 26(21): 28131-28139.

[59] Zhou Y G, Zhou C, Cao C F, et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge[J]. Optics Express, 2017, 25(23): 28817-28824.

[60] Markus A, Chen J X, Paranthoën C, et al. Simultaneous two-state lasing in quantum-dot lasers[J]. Applied Physics Letters, 2003, 82(12): 1818-1820.

[61] Majid M. Childs D T D, Kennedy K, et al. O-band excited state quantum dot bilayer lasers[J]. Applied Physics Letters, 2011, 99(5): 051101.

[62] Stevens B J. Childs D T D, Shahid H, et al. Direct modulation of excited state quantum dot lasers[J]. Applied Physics Letters, 2009, 95(6): 061101.

[63] Liu C Y, Wang H, Meng Q Q, et al. Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 μm InAs/InGaAs quantum dot lasers[J]. Applied Physics Express, 2013, 6(10): 102702.

[64] Xu P F, Yang T, Ji H M, et al. Temperature-dependent modulation characteristics for 1.3 μm InAs/GaAs quantum dot lasers[J]. Journal of Applied Physics, 2010, 107(1): 013102.

[65] Ji H M, Yang T, Cao Y L, et al. Self-heating effect on the two-state lasing behaviors in 1.3-μm InAs-GaAs quantum-dot lasers[J]. Japanese Journal of Applied Physics, 2010, 49(7): 072103.

[66] Lü Z, Ji H M, Luo S, et al. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation[J]. AIP Advances, 2015, 5(10): 107115.

[67] Lü Z, Ji H M, Yang X G, et al. Large signal modulation characteristics in the transition regime for two-state lasing quantum dot lasers[J]. Chinese Physics Letters, 2016, 33(12): 124204.

[68] Röhm A, Lingnau B, Lüdge K. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices[J]. Applied Physics Letters, 2015, 106(19): 191102.

[69] Wang C, Lingnau B, Lüdge K, et al. Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state[J]. IEEE Journal of Quantum Electronics, 2014, 50(9): 1-9.

[70] Arsenijevic D, Schliwa A, Schmeckebier H, et al. Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers[J]. Applied Physics Letters, 2014, 104(18): 181101.

[71] Arsenijevic D, Bimberg D. Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying[J]. Proceedings of SPIE, 2016, 9892: 98920S.

[72] Xu P F, Ji H M, Xiao J L, et al. Reduced linewidth enhancement factor due to excited state transition of quantum dot lasers[J]. Optics Letters, 2012, 37(8): 1298-1300.

[73] Cataluna M A, Sibbett W, Livshits D, et al. Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser[J]. Applied Physics Letters, 2006, 89(8): 081124.

[74] Cataluna M A, Nikitichev D I, Mikroulis S, et al. Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation[J]. Optics Express, 2010, 18(12): 12832-12838.

[75] Grillot F, Naderi N, Wright J B, et al. A dual-mode quantum dot laser operating in the excited state[J]. Applied Physics Letters, 2011, 99(23): 231110.

[76] Wang T, Liu H Y, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates[J]. Optics Express, 2011, 19(12): 11381-11386.

[77] Lee A, Jiang Q, Tang M C, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities[J]. Optics Express, 2012, 20(20): 22181-22187.

[78] Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon[J]. Applied Physics Letters, 2014, 104(4): 041104.

[79] Liu A Y, Herrick R W, Ueda O, et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 690-697.

[80] Chen S M, Li W, Wu J, et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J]. Nature Photonics, 2016, 10(5): 307-311.

[81] Shutts S, Allford C P, Spinnler C, et al. Degradation of III-V quantum dot lasers grown directly on silicon substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 18769741.

[82] 杨冠卿, 徐波, 梁平, 等. 外延生长法制备的Si基1.3微米量子点激光器[C]∥第十二届全国硅基光电子材料及器件研讨会论文集. [出版地不详: 出版者不详], 2017.

    Yang GQ, XuB, LiangP, et al. Si-based 1.3 μm quantum dot laser prepared by epitaxial growth[ C]∥The 12th national symposium on Si-based optoelectronic materials and devices. [S.l.: s.n.], 2017.

[83] Chen S M, Tang M C, Wu J, et al. 1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 ℃[J]. Electronics Letters, 2014, 50(20): 1467-1468.

[84] 王霆, 张建军, Liu H. 硅基Ⅲ-Ⅴ族量子点激光器的发展现状和前景[J]. 物理学报, 2015, 64(20): 204209.

    Wang T, Zhang J J, Liu H. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect[J]. Acta Physica Sinica, 2015, 64(20): 204209.

[85] Wu J, Chen S M, Seeds A J, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells[J]. Journal of Physics D, 2015, 48(36): 363001.

[86] Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si[J]. Optics Letters, 2017, 42(2): 338-341.

[87] Kunert B, Németh I, Reinhard S, et al. Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate[J]. Thin Solid Films, 2008, 517(1): 140-143.

[88] Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration[J]. Journal of Crystal Growth, 2011, 315(1): 37-47.

[89] Jung D, Norman J, Kennedy M J, et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si[J]. Applied Physics Letters, 2017, 111(12): 122107.

[90] Liu S T, Jung D, Norman J, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si[J]. Electronics Letters, 2018, 54(7): 432-433.

[91] Liu S T, Wu X R, Jung D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity[J]. Optics, 2019, 6(2): 128-134.

[92] Jung D, Zhang Z Y, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency[J]. ACS Photonics, 2018, 5(3): 1094-1100.

[93] Buffolo M, Samparisi F, Rovere L, et al. Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(2): 18990272.

[94] Wan Y, Li Q, Liu A Y, et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon[J]. Optics Letters, 2016, 41(7): 1664-1667.

[95] Norman J, Kennedy M J, Selvidge J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si[J]. Optics Express, 2017, 25(4): 3927-3934.

[96] Wan Y T, Jung D, Norman J, et al. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si[J]. Optics Express, 2017, 25(22): 26853-26860.

[97] Chen S M, Liao M Y, Tang M C, et al. Electrically pumped continuous-wave 13 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates[J]. Optics Express, 2017, 25(5): 4632-4639.

[98] Wan Y T, Shang C, Norman J, et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(2): 1900409.

[99] Kwoen J, Jang B, Lee J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)[J]. Optics Express, 2018, 26(9): 11568-11576.

[100] Kwoen J, Jang B, Watanabe K, et al. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si(001)[J]. Optics Express, 2019, 27(3): 2681-2688.

吕尊仁, 张中恺, 王虹, 丁芸芸, 杨晓光, 孟磊, 柴宏宇, 杨涛. 1.3 μm半导体量子点激光器的研究进展[J]. 中国激光, 2020, 47(7): 0701016. Lü Zunren, Zhang Zhongkai, Wang Hong, Ding Yunyun, Yang Xiaoguang, Meng Lei, Chai Hongyu, Yang Tao. Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701016.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!