大气与环境光学学报, 2020, 15 (1): 48, 网络出版: 2020-03-10   

大气海洋高光谱分辨率激光雷达鉴频特性研究

Investigation on Discrimination Characteristics of Atmospheric and Oceanic High-Spectral-Resolution Lidar
作者单位
1 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
2 中国科学院上海光学精密机械研究所, 上海 201800
摘要
统一分析大气海洋高光谱分辨率激光雷达(HSRL)的鉴频性能, 能够为大气海洋的联合探测研究提供帮助。 提出了一种基于视场展宽迈克尔逊干涉仪(FWMI)鉴频器的大气海洋HSRL系统和算法, 用于反演海水和 大气颗粒的180°体积散射系数。该系统的核心在于采用混合-分子双通道接收信号, 其中分子通道 利用FWMI鉴频器滤除颗粒信号, 透过分子信号。研究表明, 反演误差会随着颗粒散射比(总180°体积散射 系数与分子180°体积散射系数之比)增大而线性增大, 而光谱分离比(分子与颗粒透过率之比)的提高能够显 著抑制误差的增长趋势。因为海洋的分子散射与颗粒散射在光谱上更加分离, 因此FWMI在海洋HSRL上的鉴频 能力高于大气HSRL。所提的基于FWMI的HSRL系统能够工作于水体和大气中, 对大气海洋激光雷达的性能提升有重要的意义。
Abstract
The combined analysis of the discrimination performance of the atmospheric and oceanic high-spectral-resolution lidar (HSRL) can help the joint atmospheric and oceanic observation research. An atmospheric and oceanic HSRL system based on the field-widened Michelson interferometer (FWMI) discriminator is proposed in this work, which can be used to retrieve the 180-degree volume scattering function of oceanic and atmospheric particles. The core of the system is the combined-molecular dual channel, in which the molecular channel uses FWMI discriminator to filter the particle signal but transmit the molecular signal. It is shown that the retrieval error will increase proportionally with the particulate scattering ratio (the ratio of the total 180-degree volume scattering function to that of molecular), while the enhancing of the spectral discrimination ratio (the ratio of the molecular transmittance to the particulate transmittance) can significantly suppress the growth trend of the retrieval error. Because molecular scattering and particulate scattering are separated in the spectrum of oceanic HSRL, FWMI has a better discriminating characteristics in the oceanic HSRL than in the atmospheric HSRL. The proposed HSRL system based on FWMI can work in water and atmosphere, which is of great significance to the performance improvement of atmospheric and oceanic lidar.
参考文献

[1] Balino B M, Fasham M J R, Bowles M C. Ocean biogeochemistry and global change: JGOFS research highlights 1988-2000[J].Igbp Science, 2001, 2: 1-32.

[2] Churnside J H. Review of profiling oceanographic lidar[J].Optical Engineering, 2014, 53(5): 051405.

[3] Liu D, Xu P, Zhou Y, et al. Lidar remote sensing of seawater optical properties: experiment and Monte Carlo simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9489-9498.

[4] Liu Q, Cui X, Chen W, et al. A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: Experiment-based comparisons and multiple scattering effects analyses[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 237: 106638.

[5] Zhou Y, Chen W, Cui X, et al. Validation of the analytical model of oceanic lidar returns: comparisons with Monte Carlo simulations and experimental results[J]. Remote Sensing, 2019, 11(16): 1870.

[6] Hirschberg J, Byrne J. Rapid underwater ocean measurements using Brillouin scattering[C].Monterey:Ocean Optics VII, 1984: 270-276.

[7] Zhou Y, Liu D, Xu P, et al. Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar[J]. Optics Express, 2017, 25(10): 11813-11826.

[8] Fiocco G, DeWolf J. Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air[J].Journal of the Atmospheric Sciences, 1968, 25(3): 488-496.

[9] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3): 346-358.

[10] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734-6752.

[11] Sweeney H E, Titterton P, Leonard D A. Method of remotely measuring diffuse attenuation coefficient of sea water[P].Google Patents, 1991.

[12] Schulien J A, Behrenfeld M J, Hair J W, et al. Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar[J]. Optics Express, 2017, 25(12): 13577-13587.

[13] Liu D, Zhou Y, Chen W, et al. Phase function effects on the retrieval of oceanic high-spectral-resolution lidar[J]. Optics Express, 2019, 27(12): A654-A668.

[14] Zhou Y, Chen W, Liu D, et al. Multiple scattering effects on the return spectrum of oceanic high-spectral-resolution lidar[J]. Optics Express, 2019, 27(21): 30204-30216.

[15] O’Connor C L, Schlupf J P. Brillouin scattering in water: the Landau-Placzek ratio[J].The Journal of Chemical Physics, 1967, 47(1): 31-38.

[16] Fabelinskii I L, Levine H B.Molecular Scattering of Light[M]. Berlin: Springer, 1968.

[17] Cheng Z, Liu D, Luo J, et al. Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties[J]. Applied Optics, 2014, 53(20): 4386-4397.

[18] Cheng Z, Liu D, Luo J, et al. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework[J]. Optics Express, 2015, 23(9): 12117-12134.

刘东, 周雨迪, 朱小磊, 陈扬, 徐沛拓, 刘崇, 王南朝, 沈雪. 大气海洋高光谱分辨率激光雷达鉴频特性研究[J]. 大气与环境光学学报, 2020, 15(1): 48. LIU Dong, ZHOU Yudi, ZHU Xiaolei, CHEN Yang, XU Peituo, LIU Chong, WANG Nanchao, SHEN Xue. Investigation on Discrimination Characteristics of Atmospheric and Oceanic High-Spectral-Resolution Lidar[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 48.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!