High Power Laser Science and Engineering, 2021, 9 (1): 010000e3, Published Online: Feb. 8, 2021   

Reflecting laser-driven shocks in diamond in the megabar pressure range Download: 1106次

Author Affiliations
1 IPPLM Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
2 CNRS, CEA, CELIA, Universite de Bordeaux, Talence, France
3 Donostia International Physics Center (DIPC), Donostia-San Sebastian, Basque Country, Spain
4 Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
5 Fisika Aplikatua 1 Saila, Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Basque Country, Spain & Centro de Física de Materiales (CSIC-UPV/EHU), Donostia/San Sebastian, Basque Country, Spain
6 Department of Plasma Physics, National Research Nuclear University MEPhI, Moscow, Russia
7 Joint Institute for High Temperature RAS, Moscow, Russia
8 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
9 Dipartimento di Ingegneria Industriale, Università degli studi di Roma “Tor Vergata”, Roma, Italy
10 Institute for Microelectronics and Microsystems - CNR, Roma, Italy
11 IGRRE - Joint Institute for High Temperatures RAS, Makhachkala, Russia
12 Department of Physics “G. Occhialini”, University of Milano-Bicocca, Milano, Italy
Figures & Tables

Fig. 1. (a) Scheme of the target used in the experiment and (b) image of Ni layer deposited on target rear side (taken before deposition of the Ni layer on the target front side).

下载图片 查看原文

Fig. 2. Reflection of the VISAR probe beam: (a) from a reflecting shock traveling in the material; (b) from a free surface travelling in vacuum; (c) from a reflecting surface embedded in a compressed transparent material.

下载图片 查看原文

Fig. 3. VISAR streak camera images from shot 15: (a) VISAR with sensitivity S = 11.3 km/(s·fringe); (b) VISAR with sensitivity S = 4.62 km/(s·fringe). The total time windows are 32.98 ns for VISAR1 and 30.47 ns for VISAR2. Images were recorded on a 16-bit CCD with 1280 × 1024 pixels giving a conversion of ∼30 ps/pixel.

下载图片 查看原文

Fig. 4. Time history of the shock velocity in diamond obtained by analyzing the fringe shift of the two VISARs from shot 15 (Figure 3). Here t = 0 is the time of shock breakout at the inner nickel/diamond interface and the shock breakout at diamond rear side takes place 13.48 ns afterwards. The first part of the graph represents the shock velocity in diamond. The second part shows the free surface velocity of diamond after shock breakout at the target rear side.

下载图片 查看原文

Fig. 5. (a) Density map of hydrodynamic simulations from MULTI 1D reproducing shot 15. (b) Pressure map of the same shot. (c), (d) Hydrodynamic simulations with the Ni step. Such plots allow the free surface velocity to be estimated for the Ni step and the diamond layer, respectively.

下载图片 查看原文

Fig. 6. Result of MULTI 2D simulation. Pressure map (in cgs units) at 14.3 ns within a 300 μm thick target irradiated by a 0.53 μm laser, flat top in space (spot diameter 500 μm) and time (duration 1 ns) with intensity 9 × 1013 W/cm2.

下载图片 查看原文

Fig. 7. Phase diagram of carbon according to Grumbach and Martin[7] and shock Hugoniot from the SESAME table 7834. The two dashed horizontal red lines show the range of pressures reached in diamond in our shot 15.

7] and shock Hugoniot from the SESAME table 7834. The two dashed horizontal red lines show the range of pressures reached in diamond in our shot 15." class="imgSplash img-thumbnail" style="cursor:pointer;">

下载图片 查看原文

Fig. 8. Comparison of phase diagram of carbon from Benedict et al.[11] and by Grumbach and Martin[7]: black, the boundaries among different phases according to Ref. [7]; blue, boundaries according to Ref. [11]; green, Hugoniot from SESAME table 7834; red, theoretical Hugoniot from Ref. [11]; thick black, experimental Hugoniot from Eggert et al.[37].

11] and by Grumbach and Martin[7" target="_self" style="display: inline;">7]: black, the boundaries among different phases according to Ref. [7]; blue, boundaries according to Ref. [11]; green, Hugoniot from SESAME table 7834; red, theoretical Hugoniot from Ref. [11]; thick black, experimental Hugoniot from Eggert et al.[37" target="_self" style="display: inline;">37]." class="imgSplash img-thumbnail" style="cursor:pointer;">

下载图片 查看原文

Fig. 9. Energy gap versus temperature and electron density in the conduction band calculated using the formula from Varshni (constant density, effect of temperature only) and that from Bradley et al. (along the Hugoniot). In this last case, the temperature has been related to compression through SESAME table 7834. For comparison we also show the case in which there is no variation of density and variation of energy gap (i.e., the increase in temperature only affects the Fermi–Dirac distribution of electrons).

下载图片 查看原文

Table1. Obtained experimental results using shock chronometry. We report the thickness of the diamond layer, the laser energy, the shock breakout times from VISAR data, and the corresponding shock velocities. For the first layer, the shock velocity is just an average value obtained by dividing the total 25 μm thickness (plastic ablator + first nickel layer) by the shock breakout time.

Time Δt (ns)
VISAR 1VISAR 2Velocity (km/s)
Shot numberS = 11.3S = 4.62D1D2Diamond thickness d (μm)Laser energy (J)
t1t01.591.8315.7213.66
15t2t014.7915.4920.4619.77270149
t3t016.7517.4510.2010.20
t1t02.202.5811.369.69
18t2t016.2215.3418.5420.37260128
t3t019.4617.426.179.62
t1t02.002.5112.509.96
19t2t015.2415.2417.3718.07230126
t3t018.1217.526.948.77
t1t00.792.5131.649.96
21t2t014.0715.7518.8218.88250142
t3t015.6117.3812.9912.27

查看原文

Table2. Comparison of experimental and numerical results for shot 15. Simulations were performed using the SESAME table 7830.

t1t0t2t0t3t0D diamondD nickelFree surface velocity diamondFree surface velocity nickel
Shot 15(ns)(ns)(ns)(km/s)(km/s)(km/s)b(km/s)
Experimenta1.6615.1417.1020.1110.20∼8.70∼8.00
Simulation1.3015.1016.6519.5612.909.808.77

查看原文

Table3. Comparison of experimental and numerical results for all shots (note that the laser intensity reported in this table is the intensity used in hydro simulations in order to reproduce experimental data).

ShotThickness diamond (μm)Laser intensity on target (W/cm2)D diamond from transition time (km/s)aD diamond from fringe shift (km/s)bD (km/s)Experimental free surface velocity diamond (km/s)Simulated free surface velocity diamond (km/s)
152709 × 101320.1124.0019,56∼ 8.709.80
182607.6 × 101319.4619.0818.91∼ 6.006,44
192303 × 101317.7219.2318.07∼ 7.006.41
212506 × 101318.8519.0218.68∼ 7.007.81

查看原文

K. Jakubowska, D. Mancelli, R. Benocci, J. Trela, I. Errea, A. S. Martynenko, P. Neumayer, O. Rosmej, B. Borm, A. Molineri, C. Verona, D. Cannatà, A. Aliverdiev, H. E. Roman, D. Batani. Reflecting laser-driven shocks in diamond in the megabar pressure range[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e3.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!