中国激光, 2019, 46 (8): 0801009, 网络出版: 2019-08-13  

基于共轭微腔和磁微腔耦合共振的多偏振态激光输出 下载: 833次

Multiple-Polarization Laser Based on Coupling of Conjugated and Magnetic Microcavities
作者单位
1 安庆师范大学物理和电气工程学院, 安徽 安庆 246133
2 江苏大学计算机科学与通信工程学院, 江苏 镇江 212013
引用该论文

吴义恒, 李小雪, 方云团. 基于共轭微腔和磁微腔耦合共振的多偏振态激光输出[J]. 中国激光, 2019, 46(8): 0801009.

Yiheng Wu, Xiaoxue Li, Yuntuan Fang. Multiple-Polarization Laser Based on Coupling of Conjugated and Magnetic Microcavities[J]. Chinese Journal of Lasers, 2019, 46(8): 0801009.

参考文献

[1] Bhattacharya A, Baten M Z, Iorsh I, et al. Room-temperature spin polariton diode laser[J]. Physical Review Letters, 2017, 119(6): 067701.

[2] Saha D, Basu D, Bhattacharya P. High-frequency dynamics of spin-polarized carriers and photons in a laser[J]. Physical Review B, 2010, 82(20): 205309.

[3] Yu N F, Wang Q J, Pflügl C, et al. Semiconductor lasers with integrated plasmonic polarizers[J]. Applied Physics Letters, 2009, 94(15): 151101.

[4] Martín M D, Aichmayr G, Viña L, et al. Polarization control of the nonlinear emission of semiconductor microcavities[J]. Physical Review Letters, 2002, 89(7): 077402.

[5] Shelykh I, Kavokin K V, Kavokin A V, et al. Semiconductor microcavity as a spin-dependent optoelectronic device[J]. Physical Review B, 2004, 70(3): 035320.

[6] 徐攀, 夏光琼, 吴正茂, 等. 光抽运下1300 nm自旋垂直腔面发射激光器输出激光的圆偏振转换及偏振双稳特性[J]. 中国激光, 2018, 45(4): 0401002.

    Xu P, Xia G Q, Wu Z M, et al. Circular polarization switching and polarization bistability of optically pumped 1300 nm spin vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 2018, 45(4): 0401002.

[7] Ohadi H, Kammann E. Liew T C H, et al. Spontaneous symmetry breaking in a polariton and photon laser[J]. Physical Review Letters, 2012, 109(1): 016404.

[8] Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry[J]. Nature Photonics, 2017, 11(12): 752-762.

[9] Yang F, Liu Y C, You L. Anti-PT symmetry in dissipatively coupled optical systems[J]. Physical Review A, 2017, 96(5): 053845.

[10] Jahromi A K, Hassan A U, Christodoulides D N, et al. Statistical parity-time-symmetric lasing in an optical fibre network[J]. Nature Communications, 2017, 8: 1359.

[11] Wu J Y, Yang X B. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks[J]. Optics Express, 2017, 25(22): 27724-27735.

[12] Nazari F, Nazari M. Moravvej-Farshi M K. A 2×2 spatial optical switch based on PT-symmetry[J]. Optics Letters, 2011, 36(22): 4368-4370.

[13] 张亦弛, 江晓明, 夏景, 等. 基于宇称-时间对称结构透射率变化的可调高灵敏度温度传感器[J]. 中国激光, 2018, 45(7): 0710002.

    Zhang Y C, Jiang X M, Xia J, et al. Tunable high sensitivity temperature sensor based on transmittance changes of parity-time symmetry structure[J]. Chinese Journal of Lasers, 2018, 45(7): 0710002.

[14] Chong Y D, Ge L, Stone A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems[J]. Physical Review Letters, 2011, 106(9): 093902.

[15] Ge L, Chong Y D, Stone A D. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures[J]. Physical Review A, 2012, 85(2): 023802.

[16] Nazari F, Bender N, Ramezani H, et al. Optical isolation via PT-symmetric nonlinear Fano resonances[J]. Optics Express, 2014, 22(8): 9574-9584.

[17] Chang L, Jiang X S, Hua S Y, et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators[J]. Nature Photonics, 2014, 8(7): 524-529.

[18] Assawaworrarit S, Yu X F, Fan S H. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit[J]. Nature, 2017, 546(7658): 387-390.

[19] Inoue M, Arai K, Fujii T, et al. Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers[J]. Journal of Applied Physics, 1998, 83(11): 6768-6770.

[20] Kato H, Matsushita T, Takayama A, et al. Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals[J]. Journal of Applied Physics, 2003, 93(7): 3906-3911.

[21] Takeda E, Todoroki N, Kitamoto Y, et al. Faraday effect enhancement in Co-ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry-Pérot resonator[J]. Journal of Applied Physics, 2000, 87(9): 6782-6784.

[22] Steel M J, Levy M, Osgood R M. High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects[J]. IEEE Photonics Technology Letters, 2000, 12(9): 1171-1173.

[23] Steel M J, Levy M, Osgood R M. Jr. Photonic bandgaps with defects and the enhancement of Faraday rotation[J]. Journal of Lightwave Technology, 2000, 18(9): 1297-1308.

[24] Armelles G, Cebollada A, García-Martín A, et al. Magnetoplasmonics: combining combining magnetic and plasmonic functionalities[J]. Advanced Optical Materials, 2013, 1(1): 10-35.

[25] Chin J Y, Steinle T, Wehlus T, et al. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation[J]. Nature Communications, 2013, 4: 1599.

[26] Belotelov V I, Kreilkamp L E, Akimov I A, et al. Plasmon-mediated magneto-optical transparency[J]. Nature Communications, 2013, 4: 2128.

[27] Tsakmakidis K. Non-reciprocal plasmonics[J]. Nature Materials, 2013, 12(5): 378.

[28] Hu B, Wang Q J, Zhang Y. Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons[J]. Optics Letters, 2012, 37(11): 1895-1897.

[29] 王向贤, 白雪琳, 庞志远, 等. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究[J]. 物理学报, 2019, 68(3): 037301.

    Wang X X, Bai X L, Pang Z Y, et al. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film[J]. Acta Physica Sinica, 2019, 68(3): 037301.

[30] Fang Y T, Zhu N, Zhou J. Orthogonal decomposition of elliptically polarized light through resonators composed of magnetic film[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(17): 2645-2648.

[31] 温晓文, 李国俊, 仇高新, 等. 多缺陷结构的一维磁光多层膜隔离器[J]. 物理学报, 2004, 53(10): 3571-3576.

    Wen X W, Li G J, Qiu G X, et al. One-dimensional magneto optical multi-layer film isolator with multi-defect[J]. Acta Physica Sinica, 2004, 53(10): 3571-3576.

[32] Luo X G, Zhou M, Liu J F, et al. Magneto-optical metamaterials with extraordinarily strong magneto-optical effect[J]. Applied Physics Letters, 2016, 108(13): 131104.

[33] Cai WS, ShalaevV. Optical metamaterials: fundamentals and applications[M]. New York: Springer, 2010: 59- 74.

吴义恒, 李小雪, 方云团. 基于共轭微腔和磁微腔耦合共振的多偏振态激光输出[J]. 中国激光, 2019, 46(8): 0801009. Yiheng Wu, Xiaoxue Li, Yuntuan Fang. Multiple-Polarization Laser Based on Coupling of Conjugated and Magnetic Microcavities[J]. Chinese Journal of Lasers, 2019, 46(8): 0801009.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!