激光与光电子学进展, 2018, 55 (1): 011412, 网络出版: 2018-03-22   

骨科数字化3D打印技术及应用 下载: 1588次特邀综述

3D Printing Technology in Orthopedics and Its Application
作者单位
北京工业大学北京市数字化医疗3D打印工程技术研究中心, 北京 100124
摘要
综述了近年来3D打印在骨科中的应用和研究的几个层次:3D打印出用于术前模拟手术的模型, 可以形象直观地制定手术方案, 省去手术中多余的步骤, 减少手术时间和风险, 减轻医生的劳动强度;3D打印出基于计算机辅助设计、实现精准化手术的医疗导板和量身定做的植入物, 利用医疗导板可保证手术位置、方向及角度的准确性, 并提高手术的安全性和可预见性;个性化3D打印植入物能更好地满足患者的需要, 但在进入临床前仍面临政策上的挑战。与国外技术相比较, 我国在骨科3D打印方面还存在一定差距, 通过分析指明了我国需要着重发展的技术和对策。最后, 对3D打印在骨科上的应用进行了展望。
Abstract
The recent application of 3D printing technology in orthopedic field is summarized. We explore the applied levels in orthopedics health of 3D printing, the first level is that 3D printing makes out models for preoperative simulation, which eliminates the need for intra-operative steps, reduces the time of surgery, meets the requirements of patients, and reduces the labor intensity of doctors. The next one is that 3D printing produces surgical guide based on computer-aided design to achieve the precision of the tailor-made implant operation, which shows how to use the guide to ensure the accuracy of surgical position, direction and angle, and improve the safety and predictability of surgery. The third one is 3D printed implants encounter the clinical policy challenge, but personalized 3D printed implants can better meet the needs of the patient. Compared with foreign technology, there is still a gap in the 3D printing in the orthopedics in China, which reveals the countermeasures need to be focused on by China. Finally, the future of applications of 3D printing in orthopedics is prospected.
参考文献

[1] Chen J M, Jiang Y J, Li Y S. The application of digital medical 3D printing technology on tumor operation[C]. SPIE, 2016, 9738: 973816.

[2] Jackson A, Ray L A, Dangi S, et al. 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models[C]. SPIE, 2017, 10138: 101380T.

[3] Kola M Z, Shah A H, Klialil U S, et al. Surgical templates for dental implant positioning; current knowledge and clinical perspectives[J]. Nigerian Journal of Surgery, 2015, 21(1): 1-5.

[4] Homer K, O′Malley L, Taylor K, et al. Guidelines for clinical use of CBCT: a review[J]. Dentomaxillofac Radiol, 2015, 44(1): 20140225.

[5] 余丹, 刘建华, 朱慧勇, 等. 3-D打印技术在颌面骨缺损修复重建的应用[J]. 中国修复重建外科杂志, 2014, 28(3): 292-295.

    Yu D, Liu J H, Zhu H Y, et al. Application of three-dimensional printing technique in repair and reconstruction of maxillofacial bone defect[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2014, 28(3): 292-295.

[6] 夏德林. 基于CT数据、快速成型技术个体化钛合金颅骨缺损修补术的实验与临床应用研究[D]. 北京: 中国医学科学院中国协和医科大学, 2004.

    Xia D L. The experimental and clinical study of prefabricated, individulized titanium alloy implant for the reconstruction of cranial defect based on computer data and rapid prototyping technique[D]. Beijing: Chinese Academy of Medical Sciences Peking Union Medical College, 2004.

[7] 孙坚. 上颌骨缺损的修复与重建[J]. 口腔颌面外科杂志, 2005, 15(1): 5-8.

    Sun J. Repair and reconstruction of maxillary bone defect[J]. Journal of Oral and Maxillofacial Surgery, 2005, 15(1): 5-8.

[8] 庞骄阳, 赵岩, 肖宇龙, 等. 3D打印技术在脊椎外科中的应用[J]. 中国组织工程, 2016, 20(4): 577-580.

    Pang J Y, Zhao Y, Xiao Y L, et al. Application of three-dimensional printing technology in spinal surgery[J]. Chinese Journal of Tissue Engineering Research, 2016, 22(4): 577-580.

[9] 刘琨, 赵汝岗, 张强. 3D打印技术在骨科中的应用研究进展[J]. 中华创伤骨科杂志, 2015, 17(1): 63-65.

[10] 张强, 赵吕松, 袁征. 导板导航在复杂腰椎弓根螺钉置入手术中的初步应用[J]. 中华临床医师杂志(电子版), 2013, 7(24): 262-264 .

    Zhang Q, Zhao L S, Yuan Z. Application of the pedicle drill template navigation technology in the operation of complicated lumbar spine disease[J]. Chinese Journal of Clinicians (Electronic Edition) , 2013, 7(24): 262-264.

[11] Schneider D, Marquardt P, Zwalilen M, et al. A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry[J]. Clinical Oral Implants Research, 2009, 20 (s4): 73-86.

[12] Eggers G, Patellis E, Mühling J. Accuracy of template-based dental implant placement[J]. The International Journal of Oral & Maxillofacial Implants, 2009, 24(3): 447-454.

[13] Pettersson A, Komiyama A, Hultin M, et al. Accuracy of virtually planned and template guided implant surgery on edentate patients[J]. Clinical Implant Dentistry and Related Research, 2012, 14(4): 527-537.

[14] Daniel W, Eidson R, Rudek I, et al. In-office fabrication of dental implant surgical guides using desktop stereolithographic printing and implant treatment planning software: a clinical report[J]. The Journal of Prosthetic Dentistry, 2017, 118(3): 256-263.

[15] 付军, 郭征, 王臻, 等. 多种3-D打印手术导板在骨肿瘤切除重建手术中的应用[J]. 中国修复重建外科杂志, 2014, 28(3): 304-308.

    Fu J, Guo Z, Wang Z, et al. Use of four kinds of three-dimensional printing guide plate in bone tumor resection and reconstruction operation[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2014, 28(3): 304-308.

[16] 何剑颖, 董谢平, 舒勇, 等. 脊椎保护器对腰椎保护的有限元分析[J]. 中国矫形外科杂志, 2015, 23(6): 548-555.

    He J Y, Dong X P, Shu Y, et al. The finite element analysis of protection for lumbar spine protector[J]. Orthopedic Journal of China, 2015, 23(6): 548-555.

[17] Hollander D A, Wirtz T, Walter M V, et al. Development of individual three-dimensional bone substitutes using selective laser melting[J]. European Journal of Trauma, 2003, 29(4): 228-234.

[18] Kanazawa M, Iwaki M, Minakuchi S, et al. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting[J]. The Journal of Prosthetic Dentistry, 2014, 112(6): 1441-1447.

[19] Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti6Al4V[J]. Materials Science and Engineering A, 2014, 598: 327-337.

[20] Aziz I A. Microstructure and mechanical properties of Ti-6A1-4V produced by selective laser sintering of pre-alloyed powders[D]. Hamilton: The University of Waikato, 2010.

[21] Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6A1-4V produced by rapid-layer manufacturing for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(1): 20-32.

[22] Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4): 196-203.

[23] 杨永强, 宋长辉, 王迪. 激光选区熔化技术及其在个性化医学中的应用[J]. 机械工程学报, 2014, 50(21): 140-151.

    Yang Y Q, Song C H, Wang D. Selective laser melting and its applications on personalized medical parts[J]. Journal of Mechanical Engineering, 2014, 50(21): 140-151.

[24] 张升, 桂睿智, 魏青松, 等. 选择性激光熔化成型TC4钛合金开裂行为及其机理研究[J]. 机械工程学报, 2013, 49(23): 21-27.

    Zhang S, Gui R Z, Wei Q S, et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 2013, 49(23): 21-27.

[25] 邹道星, 王泽敏, 郭宏铭, 等. 选区激光融化成型钛合金个性化舌侧托槽粘接强度初探[J]. 中华口腔医学杂志, 2013, 48(7): 419-422.

    Zou D X, Wang Z M, Guo H M, et al. Bond strengths of customized titanium brackets manufactured by selective laser melting[J]. Chinese Journal of Stomatology, 2013, 48(7): 419-422.

[26] 张庆福, 刘刚, 刘国勤. 个体化3D打印钛合金下颌骨植入体的设计制作与临床应用[J]. 口腔医学研究, 2015, 31(1): 48-51.

    Zhang Q F, Liu G, Liu G Q. Design, manufacture and application of individual mandible titanium alloy implant based on three dimensional printing[J]. Journal of Oral Science Research, 2015, 31(1): 48-51.

[27] 吴江, 高勃, 谭华, 等. 激光快速成形技术制造全口义齿钛基托[J]. 中国激光, 2006, 33(8): 1139-1142.

    Wu J, Gao B, Tan H, et al. Titanium base of complete denture fabricated with laser rapid forming[J]. Chinese Journal of Lasers, 2006, 33(8): 1139-1142.

[28] 王臻, 滕勇, 李涤尘, 等, 基于快速成型的个体化人工半膝关节的研制--计算机辅助设计与制造[J]. 中国修复重建外科杂志, 2004, 18(5): 347-351.

    Wang Z, Teng Y, Li D C, et al. Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: computer-assisted design and manufacturing[J]. Chinese Reparative and Reconstructive Surgery, 2004, 18(5): 347-351.

[29] 唐志辉, 吕宏, 曹梅霞, 等. 下颌骨半柱状骨块重建牙种植患者萎缩牙槽嵴的临床疗效[J]. 北京大学学报(医学版), 2010, 42(1):94-97.

    Tang Z H, Lu H, Cao M X, et al. Mandibular bone reconstruction semi-cylindrical dental implants in patients with the clinical efficacy of alveolar ridge atrophy[J]. Journal of Peking University (Health Sciences) , 2010, 42(1): 94-97.

[30] Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(3): 249-259.

[31] 仰东萍, 蔡宏. 我国首个3D打印人体植入物获CFDA注册批准 3D打印髋关节进入“量产”时代[EB/OL].[2015-09-01]. http://www.puh3.net.cn/yyxw/xwbd/81347.shtml.

陈继民, 张成宇, 曾勇, 徐仰立. 骨科数字化3D打印技术及应用[J]. 激光与光电子学进展, 2018, 55(1): 011412. Chen Jimin, Zhang Chengyu, Zeng Yong, Xu Yangli. 3D Printing Technology in Orthopedics and Its Application[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011412.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!