激光与光电子学进展, 2019, 56 (22): 220501, 网络出版: 2019-11-02   

基于遗传算法的双层亚波长金属光栅优化 下载: 1017次

Optimization of Bilayer Sub-Wavelength Metallic Grating Based on Genetic Algorithm
作者单位
大连理工大学机械工程学院, 辽宁 大连 116023
引用该论文

安超, 褚金奎, 张然. 基于遗传算法的双层亚波长金属光栅优化[J]. 激光与光电子学进展, 2019, 56(22): 220501.

Chao An, Jinkui Chu, Ran Zhang. Optimization of Bilayer Sub-Wavelength Metallic Grating Based on Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220501.

参考文献

[1] Yang Z Y, Lu Y F. Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions[J]. Optics Express, 2007, 15(15): 9510-9519.

[2] Weber T, Käsebier T, Kley E B, et al. Broadband iridium wire grid polarizer for UV applications[J]. Optics Letters, 2011, 36(4): 445-447.

[3] Ekinci Y, Solak H H, David C, et al. Bilayer Al wire-grids as broadband and high-performance polarizers[J]. Optics Express, 2006, 14(6): 2323-2334.

[4] 褚金奎, 张英杰, 王志文, 等. 三层亚波长光栅结构的透射特性[J]. 纳米技术与精密工程, 2013, 11(5): 442-446.

    Chu J K, Zhang Y J, Wang Z W, et al. Transmission properties of triple-layer subwavelength grating[J]. Nanotechnology and Precision Engineering, 2013, 11(5): 442-446.

[5] 谭巧, 徐启峰, 谢楠. 亚波长径向偏振光栅的设计[J]. 光电工程, 2017, 44(3): 345-350.

    Tan Q, Xu Q F, Xie N. Design of sub-wavelength radially polarized grating[J]. Opto-Electronic Engineering, 2017, 44(3): 345-350.

[6] Barho F B, Gonzalez-Posada F. Milla-Rodrigo M J, et al. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range[J]. Optics Express, 2016, 24(14): 16175-16190.

[7] Yamada I, Kintaka K, Nishii J, et al. Mid-infrared wire-grid polarizer with silicides[J]. Optics Letters, 2008, 33(3): 258-260.

[8] 李娜, 孔伟金, 季淑英, 等. 基于亚波长金属介质膜光栅的宽光谱消色差相位延迟器[J]. 光学学报, 2017, 37(2): 0205001.

    Li N, Kong W J, Ji S Y, et al. Broadband achromatic phase retarder based on subwavelength metal dielectric gratings[J]. Acta Optica Sinica, 2017, 37(2): 0205001.

[9] 陈颖, 田亚宁, 何磊, 等. 亚波长金属光栅/电介质/金属混合波导传感结构的研究[J]. 中国激光, 2018, 45(1): 0110001.

    Chen Y, Tian Y N, He L, et al. Research on subwavelength metal grating/dielectric/metal hybrid waveguide sensing structure[J]. Chinese Journal of Lasers, 2018, 45(1): 0110001.

[10] Xue Y F, Wang C, Zhang G J, et al. Compound polarized wavelength filters with a single subwavelength structure[J]. Optics Communications, 2011, 284(1): 501-509.

[11] Kumagai H, Honma H, Ishida M, et al. Fabrication of a thin plasmonic color sheet embedded with Al subwavelength gratings in parylene[J]. Displays, 2016, 45: 63-69.

[12] Chu J K, Zhang Y J, Wang Z W, et al. Polarizing color filter based on subwavelength metallic grating with grooves carved in[J]. Optics Communications, 2014, 315: 32-36.

[13] Okamoto H, Noda K, Sakamoto M, et al. Genetic algorithm-based design method for multilevel anisotropic diffraction gratings[J]. Optical Review, 2017, 24(4): 510-516.

[14] Semwal G, Rastogi V. Design of LPWG broad band filter with genetic algorithm optimization[J]. Journal of Optics, 2014, 43(3): 165-168.

[15] Teng F C, Yin W W, Wu F, et al. Application of genetic algorithm in quasi-static fiber grating wavelength demodulation technology[J]. Optoelectronics Letters, 2007, 3(4): 271-274.

[16] 高健, 王庆康, 王丹燕. 基于粒子群优化算法的透射滤光片设计[J]. 激光技术, 2018, 42(5): 617-621.

    Gao J, Wang Q K, Wang D Y. Design of transmittance filters based on particle swarm optimization algorithm[J]. Laser Technology, 2018, 42(5): 617-621.

[17] 车卫康, 孔伟金, 张晔岚, 等. 二氧化硅夹层式亚波长光栅宽带偏振分束器[J]. 激光杂志, 2018, 39(7): 12-15.

    Che W K, Kong W J, Zhang Y L, et al. Broadband polarization beam splitter based on subwavelength grating sandwiched between silica layers[J]. Laser Journal, 2018, 39(7): 12-15.

[18] Chu J K, Wang Z W, Zhang Y J, et al. Integrated blue-sensitive polarization-dependent photodetector[J]. Nanolithography, MEMS, and MOEMS, 2013, 12(3): 033005.

[19] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.

[20] TafloveA, Hagness SC, Piket-MayM. 9-computational electromagnetics: the finite-difference time-domain method[M] ∥The Electrical Engineering Handbook. Singapore: Elsevier, 2005: 629- 670.

[21] Veysoglu M E, Shin R T, Kong J A. A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case[J]. Journal of Electromagnetic Waves and Applications, 1993, 7(12): 1595-1607.

[22] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200.

[23] Palik ED. Handbook of optical constants of solids[M]. America: Academic Press, 1997, 3: 369- 406.

[24] 张娜, 褚金奎, 赵开春, 等. 基于严格耦合波理论的亚波长金属光栅偏振器设计[J]. 传感技术学报, 2006, 19(5): 1739-1743.

    Zhang N, Chu J K, Zhao K C, et al. The design of the subwavelength wire-grid polarizers based on rigorous couple-wave theory[J]. Chinese Journal of Sensors and Actuators, 2006, 19(5): 1739-1743.

安超, 褚金奎, 张然. 基于遗传算法的双层亚波长金属光栅优化[J]. 激光与光电子学进展, 2019, 56(22): 220501. Chao An, Jinkui Chu, Ran Zhang. Optimization of Bilayer Sub-Wavelength Metallic Grating Based on Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220501.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!