中国激光, 2013, 40 (8): 0803002, 网络出版: 2013-08-01   

高功率光纤激光和CO2激光焊接熔化效率对比

Comparison of Melting Efficiency in High Power Fiber Laser and CO2 Laser Welding
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
采用IPG YLS-6000光纤激光器和Slab DC035 CO2激光器,在近似相同的工艺条件下进行平板扫描焊接,通过Olympus光学显微镜测量焊缝横截面积,并计算熔化效率。结果表明:两种激光器焊接的熔化效率均随焊接速度先增加后减小,但是光纤激光焊接熔化效率峰值所对应的焊接速度要远远高于CO2激光焊接。进一步分析表明两种激光焊接熔化效率的差异与激光能量耦合的固有规律不同有关。因此,从焊接效率上考虑,光纤激光器更适合于高速焊接,而CO2激光器更适合于低速焊接。
Abstract
Bead-on-plate welding is carried out with an IPG YLS-6000 fiber laser and a slab DC035 CO2 laser under the similar conditions. The melting efficiencies are calculated based on the measured weld cross-sectional areas with an Olympus microscope. The results show that the melting efficiency increases firstly and then decreases with welding speed increasing in both cases. However, the welding speed corresponding to the maximum melting efficiency is far greater in fiber laser welding than that in CO2 laser welding. Further analysis demonstrates that the difference of the melting efficiency is relevant to the inherent difference of the energy coupling. Therefore, from the viewpoint of welding efficiency, fiber laser is more suitable for high-speed welding, while CO2 laser is more suitable for low-speed welding.
参考文献

[1] 梅丽芳,陈根余,金湘中,等. 车用铝合金光纤激光搭接焊的研究[J]. 中国激光, 2010, 37(8): 2091-2097.

    Mei Lifang, Chen Genyu, Jin Xiangzhong, et al.. Study on fiber laser overlap welding of automobile aluminum alloy[J]. Chinese J Lasers, 2010, 37(8): 2091-2097.

[2] W Penn. Trends in laser material processing for cutting, welding, and metal deposition using carbon dioxide, direct diode, and fiber lasers[C]. SPIE, 2005, 5706: 25-37.

[3] Y Kawahito, N Matsumoto, M Mizutani, et al.. Characterisation of plasma induced during high power fibre laser welding of stainless steel[J]. Sci Technol Weld Join, 2008, 13(8): 744-748.

[4] Y Kawahito, K Kinoshita, N Matsumoto, et al.. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Sci Technol Weld Join, 2008, 13(8): 749-753.

[5] J Wang, C Wang, X Meng, et al.. Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding[J]. Opt Laser Technol, 2012, 44(1): 67-70.

[6] Y Kawahito, M Mizutani, S Katayama. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry[J]. J Phys D: Appl Phys, 2007, 40(19): 5854-5859.

[7] Y Kawahito, M Mizutani, S Katayama. High quality welding of stainless steel with 10 kW high power fibre laser[J]. Sci Technol Weld Join, 2009, 14(4): 288-294.

[8] J Cho, D F Farson, M J Reiter. Analysis of penetration depth fluctuations in single-mode fibre laser welds[J]. J Phys D: Appl Phys, 2009, 42(11):115501

[9] 檀财旺, 李俐群, 陈彦宾, 等. AZ31B镁合金的光纤激光与CO2激光焊接特性[J]. 中国激光, 2011,38(6): 0603015.

    Tan Caiwang, Li Liqun, Chen Yanbin, et al.. Characteristics of fiber laser and CO2 laser welding of AZ31B magnesium alloys[J]. Chinese J Lasers, 2011, 38(6): 0603015.

[10] H Hitoshi, I Takashi, K Shigeharu, et al.. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet[J]. Quarterly J Japan Welding Society, 2001, 19(4): 591-599.

[11] 赵耀邦, 雷正龙, 陈彦宾. 不锈钢激光电弧双面焊接头熔化特征分析[J]. 中国激光, 2011, 38(2): 0203001.

    Zhao Yaobang, Lei Zhenglong, Chen Yanbin. Analysis of melting characteristics of laser-arc double-sided welding for stainless steel[J]. Chinese J Lasers, 2011, 38(2): 0203001.

[12] X Chen,H Wang. A calculation model for the evaporation recoil pressure in laser material processing[J]. J Phys D: Appl Phys, 2001, 34(17): 2637-2642.

[13] V V Semak, R J Steele, P W Fuerschbach, et al.. Role of beam absorption in plasma during laser welding[J]. J Phys D: Appl Phys, 2000, 33(10): 1179-1185.

[14] W Schulz, D Becker, J Franke, et al.. Heat conduction losses in laser cutting of metals[J]. J Phys D: Appl Phys, 1993, 26(9): 1357-1363.

[15] T J Collat, M Vicanek, G Simon. Heat transport in melt flowing past the keyhole in deep penetration welding[J]. J Phys D: Appl Phys, 1994, 27(10): 2035-2040.

[16] M G Galushkin, V S Golubev, R V Grishaev, et al.. The comparison of models for calculating heat conduction losses in laser cutting of metals[C]. SPIE, 2011, 7994: 79941Y.

[17] A Kaplan. A model of deep penetration laser welding based on calculation of the keyhole profile[J]. J Phys D: Appl Phys, 1994, 27(9): 1805-1814.

[18] A Mahrle, E Beyer. Theoretical aspects of fibre laser cutting[J]. J Phys D: Appl Phys, 2009, 42(17): 175507

邹江林, 吴世凯, 肖荣诗, 张心怡, 牛建强. 高功率光纤激光和CO2激光焊接熔化效率对比[J]. 中国激光, 2013, 40(8): 0803002. Zou Jianglin, Wu Shikai, Xiao Rongshi, Zhang Xinyi, Niu Jianqiang. Comparison of Melting Efficiency in High Power Fiber Laser and CO2 Laser Welding[J]. Chinese Journal of Lasers, 2013, 40(8): 0803002.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!