中国激光, 2015, 42 (5): 0515001, 网络出版: 2015-05-06   

GA-BP神经网络在检测微量磷酸盐中的应用

Application of GA-BP Neural Network in Detection of Trace Phosphate
作者单位
燕山大学电气工程学院河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
摘要
基于罗丹明6G 的分子荧光原理,通过对比不同实验条件下得到的罗丹明6G 荧光光谱,得出pH 为1条件下的相对荧光强度最大。罗丹明6G 试剂中加入钼酸铵、磷酸二氢钾、硫酸试剂生成络合物后,罗丹明6G 的相对荧光强度值有所下降,在一定范围内表现出线性关系,罗丹明6G 荧光峰的位置没有发生变化。基于遗传算法-逆向误差传播(GA-BP)神经网络构建了输入节点数为36×18的矩阵、输出节点数为1×18的矩阵、以检测磷酸盐浓度为目的的非线性模型。网络训练中,误差精度为10-3,输出与期望的相关系数为0.998,网络预测中,平均回收率为99%,平均标准偏差值为1.79%,达到了理想的检测效果。证明此网络适用于检测0~2.00 mg/L 的磷酸盐溶液。提供了一种快速、有效检测磷酸盐浓度的方法,有助于环境检测技术的发展和应用。
Abstract
Based on the principle of molecule fluorescence of rhodamine 6G, the fluorescence spectra under different experimental conditions are compared and the maximum fluorescence intensity is obtained when pH is 1. When molybdate, potassium dihydrogen phosphate and sulfuric acid are added into the rhodamine 6G reagent the complex is generated and the fluorescence intensity of rhodamine 6G declines. Within a certain range, it exhibits linear relationship. The position of fluorescence peak does not change. A nonlinear model is constructed based on genetic algorithm-back propagation (GA-BP) neural network which consists of a 36×18 matrix as inputs and a 1 × 18 matrix as outputs, and its purpose is to detect the phosphate concentration. In network training, the error accuracy is 10-3 and the correlation coefficient between the outputs and the expectations is 0.998. In network prediction, the average recovery is 99%, while the average standard deviation is 1.79% , reaching the ideal results. Therefore, this network can better detect phosphate concentration of 0~2.00 mg/L. In summary, a quick and effective way to detect phosphate concentration is provided, which helps promote the development and application of environmental monitoring technique.
参考文献

[1] 何锡文, 史长虹, 张贵珠, 等. 罗丹明6G 的溶液状态和荧光特性的研究[J]. 分析化学, 1993, 21(9): 1008-1012.

    He Xiwen, Shi Changhong, Zhang Guizhu, et al.. Fluorimetric property of rhodamine 6G in aqueous solution and state of its molecular aggregation[J]. Chinese Journal of Analytical Chemistry, 1993, 21(9): 1008-1012.

[2] 骆晓森, 倪晓武, 陆建, 等. 不同波长光照射血液诱发的荧光光谱研究[J]. 中国激光, 2003, 30(1): 93-96.

    Luo Xiaosen, Ni Xiaowu, Lu Jian, et al.. Study of fluorescent spectrum of blood induced by lights of different wavelengths[J]. Chinese J Lasers, 2003, 30(1): 93-96.

[3] 刘海龙, 吴希军, 田广军. 三维荧光光谱技术及平行因子分析法在绿茶分析及种类鉴别中的应用[J]. 中国激光, 2008, 35(5): 685-689.

    Liu Hailong, Wu Xijun, Tian Guangjun. Three-dimensional fluorescence spectroscopy combined with parallel factor analysis as a complementary technique for green tea characterization[J]. Chinese J Lasers, 2008, 35(5): 685-689.

[4] 徐积仁, 黄南堂, 康宁, 等. 308 nm 激光诱导动物血管荧光光谱的观测[J]. 中国激光, 1993, 20(2): 136-139.

    Xu Jiren, Huang Nantang, Kang Ning, et al.. 308 nm laser-induced fluorescence spectra of animal blood[J]. Chinese J Lasers, 1993, 20(2): 136-139.

[5] 刘泓, 莫玉龙. 基于分维特征和反向传播神经网络的自然纹理识别[J]. 光学学报, 1999, 19(10): 1406-1410.

    Liu Hong, Mo Yulong. Texture classification based on fractal dimension and BP neural network[J]. Acta Optica Sinica, 1999, 19(10): 1406-1410.

[6] 杨建文, 高胜泉, 张艳炘, 等. 光学神经网络中硬件误差对性能影响的分析[J]. 光学学报, 1995, 15(12): 1689-1696.

    Yang Jianwen, Gao Shengquan, Zhang Yanxin, et al.. Influence of hardware error on optical neural network[J]. Acta Optica Sinica, 1995, 15(12): 1689-1696.

[7] 程惠全, 刘立人, 李国强, 等. 基于混合类间联想神经网络的光学模式识别[J]. 光学学报, 1998, 18(10): 1311-1316.

    Cheng Huiquan, Liu Liren, Li Guoqiang, et al.. Optical pattern recognition based on hybrid interpattern associative neural network [J]. Acta Optica Sinica, 1998, 18(10): 1311-1316.

[8] 王冲冲, 胡立发, 何斌, 等. 基于神经网络的压电倾斜镜磁滞补偿方法研究[J]. 中国激光, 2013, 40(11): 1113001.

    Wang Chongchong, Hu Lifa, He Bin, et al.. Hysteresis compensation method of piezoelectric steering mirror based on neural networks[J]. Chinese J Lasers, 2013, 40(11): 1113001.

[9] 申金媛, 韩应哲, 常胜江, 等. 非线性荧光光谱的神经网络分析及其应用[J]. 光学学报, 2004, 24(7): 1000-1003.

    Shen Jinyuan, Han Yingzhe, Chang Shengjiang. Neural network analysis and application of nonlinear fluorescence spectra[J]. Acta Optica Sinica, 2004, 24(7): 1000-1003.

[10] 阮秀凯, 李昌, 谈燕花, 等. 基于电域反馈神经网络的自适应盲均衡法[J]. 光学学报, 2013, 33(5): 0506002.

    Ruan Xiukai, Li Chang, Tan Yanhua, et al.. Adaptive blind equalization using electrical recurrent neural networks[J]. Acta Optica Sinica, 2013, 33(5): 0506002.

[11] 王玉, 张新, 王灵杰, 等. 基于人工神经网络方法的自由曲面光学系统装调[J]. 光学学报, 2013, 33(12): 1211001.

    Wang Yu, Zhang Xin, Wang Lingjie, et al.. Freeform optical system alignment based on artificial neural networks[J]. Acta Optica Sinica, 2013, 33(12): 1211001.

[12] 夏国朝, 陶慧琳. 罗丹明6G 的三维荧光和共振散射光谱[J]. 光谱实验室, 2008, 25(5): 773-778.

    Xia Guochao, Tao Huilin. Spectrophotometric studies on three-fluorescence and resonance scattering of rhodamine 6G[J]. Chinese Journal of Spectroscopy Laboratory, 2008, 25(5): 773-778.

[13] 王东生, 杨友文, 田宗军, 等. 基于神经网络和遗传算法的激光多层熔覆厚纳米陶瓷涂层工艺优化[J]. 中国激光, 2013, 40(9): 0903001.

    Wang Dongsheng, Yang Youwen, Tian Zongjun, et al.. Process optimization of thick nanostructured ceramic coating by laser multilayer cladding based on neural networks and genetic algorithm[J]. Chinese J Lasers, 2013, 40(9): 0903001.

[14] 许兆美, 周建忠, 黄舒, 等. 基于遗传算法优化反向传播神经网络的激光铣削层质量预测[J]. 中国激光, 2013, 40(6): 0603004.

    Xu Zhaomei, Zhou Jianzhong, Huang Shu, et al.. Quality prediction of laser milling based on optimized back propagation networks by genetic algorithms[J]. Chinese J Lasers, 2013, 40(6): 0603004.

王书涛, 王兴龙, 陈东营, 魏蒙, 王志芳. GA-BP神经网络在检测微量磷酸盐中的应用[J]. 中国激光, 2015, 42(5): 0515001. Wang Shutao, Wang Xinglong, Chen Dongying, Wei Meng, Wang Zhifang. Application of GA-BP Neural Network in Detection of Trace Phosphate[J]. Chinese Journal of Lasers, 2015, 42(5): 0515001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!