激光与光电子学进展, 2016, 53 (10): 102802, 网络出版: 2016-10-12   

基于地表偏振反射模型的植被冠层偏振反射特性研究

Polarized Reflectance Characteristics of Vegetation Canopies Based on Polarization Reflection Model
作者单位
东北师范大学地理科学学院, 吉林 长春 130024
摘要
基于野外与实验室多角度偏振测量信息与偏振反射物理机理,分析了不同植被冠层的偏振反射特性,同时得到了两个地表偏振反射模型的参数。结果发现,植被冠层的偏振反射比值与入射、探测几何相关;植被冠层的偏振反射具有明显的各向异性特征,且与植被冠层的结构形态相关;地表测量的植被冠层偏振反射比可达0.095,远大于以往结果;偏振反射模型可以有效地计算出一般植被冠层的偏振反射信息,但是对于完全平展型且有光滑叶片的冠层却会出现较大误差。
Abstract
The polarized reflectance characteristics of different vegetation canopies are analyzed based on field and laboratory multi-angle polarization measurements and physical mechanism of polarized reflectance. The parameters of two polarized reflectance models are obtained respectively. The results show that the polarized reflectance factors of vegetation canopies depend on the geometry of viewing and incident angle, the distribution of polarized reflectance of vegetation canopies is anisotropic and related to the structure of canopies. The polarized reflectance ratio reaches 0.095, much larger than the previous results. The polarized reflectance factors of vegetation canopies are effectively calculated by the polarized reflectance models, but there will be a large error when for flat-type and smooth blade canopies.
参考文献

[1] Huete A, Justice C, Liu H. Development of vegetation and soil indices for MODIS-EOS[J]. Remote Sensing of Environment, 1994, 49(3): 224-234.

[2] Asner G P. Biophysical and biochemical sources of variability in canopy reflectance[J]. Remote Sensing of Environment, 1998, 64(3): 234-253.

[3] Talmage D A, Curran P J. Remote sensing using partially polarized light[J]. Internal Journal of Remote Sensing, 1986, 7(1): 47-64.

[4] Curran P. The relationship between polarized visible light and vegetation amount[J]. Remote Sensing of Environment, 1981, 11: 87-92.

[5] Vanderbilt V C, Grant L, Biehl L L, et al. Specular, diffuse, and polarized light scattered by two wheat canopies[J]. Applied Optics, 1985, 24(15): 2408-2418.

[6] Suomalainen J, Hakala T, Puttonen E, et al. Polarised bidirectional reflectance factor measurements from vegetated land surface[J]. Journal of Quantitative Spectroscopy and Ratiative Transfer, 2009, 110(17): 1044-1056.

[7] Rondeaux G, Herman M. Polarization of light reflected by crop canopies[J]. Remote Sensing of Environment, 1991, 38(1): 63-75.

[8] Woessner P, Hapke B. Polarization of light scattered by clover[J]. Remote Sensing of Environment, 1987, 21(3): 243-261.

[9] Curran P J. Polarized visible light as an aid to vegetation classification[J]. Remote Sensing of Environment, 1982, 12(6): 491-499.

[10] Cairns B, Russel E E, Travis L D. The research scanning polarimeter: Calibration and ground-based measurements[C]. SPIE, 1999, 3754: 186-196.

[11] Deuzé J L, Bréon F M, Devaus C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. Journal of Geophysical Research, 2001, 106(D5): 4913-4926.

[12] Maignan F, Bréon F M, Fédèle E, et al. Polarized reflectance of natural surfaces: Spaceborne measurements and analytical modeling[J]. Remote Sensing of Environment, 2009, 113(12): 2642-2650.

[13] Litvinov P, Hasekamp O, Cairns B. Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements[J]. Remote Sensing of Environment, 2011, 115(2): 781-792.

[14] Nadal F, Bréon F M. Parameterization of surface polarized reflectance derived from POLADER spaceborne measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1709-1718.

[15] Xie D H, Gu X F, Cheng T H, et al. Initial research on the polarized reflectance of typical urban surface types measured by the directional polarimetric camera[J]. Science China Earth Sciences, 2011, 54 (8): 1199-1205.

[16] 谢东海, 顾行发, 程天海, 等. 基于多角度偏振相机的城市典型地物双向反射特性研究[J]. 物理学报, 2012, 61(7): 077801.

    Xie Donghai, Gu Xingfa, Cheng Tianhai, et al. Research on the bidirectional reflectance of typical urban surface types measured by the directional polarimetric camera[J]. Acta Physica Sinica, 2012, 61(7): 077801.

[17] 相坤生, 程天海, 顾行发, 等. 基于多角度偏振载荷数据的中国典型地物偏振特性研究[J]. 物理学报, 2015, 64(22): 227801.

    Xiang Kunsheng, Cheng Tianhai, Gu Xingfa, et al. Polarized properties of typical surface types over China based on the multi-angular polarized remote sensing instruments[J]. Acta Physica Sinica, 2015, 64(22): 227801.

[18] 王涵, 孙晓兵, 孙斌, 等. 基于航空多角度偏振辐射计遥感数据评估陆地表面偏振反射模型[J]. 光学学报, 2014, 34(1): 0128002.

    Wang Han, Sun Xiaobing, Sun Bin, et al. Evaluation of land surface polarization models based on airborne advanced atmosphere multi-angle polarization radiometer measurements[J]. Acta Optica Sinica, 2014, 34(1): 0128002.

[19] Wang H, Sun X, Sun B, et al. Retrieval of aerosol optical properties over a vegetation surface using multi-angular, multi-spectral, and polarized data[J]. Advances in Atmospheric Sciences, 2014, 31(4): 879-887.

[20] Peltoniemi J I, Gritsevich M, Puttonen E. Reflectance and polarization characteristics of various vegetation types[M]. Heidelberg: Springer, 2015, 9: 257-294,.

[21] Breon F M, Tanre D, Lecomte P, et al. Polarized reflectance of bare soils and vegetation: Measurements and models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 487-499.

[22] Sun Z Q, Wu Z F, Zhao Y S. Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces[J]. Review of Scientific Instruments, 2014, 85(1): 014503.

[23] Sun Z Q, Lv Y F, Tong Z J. Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces[J]. Optics Express, 2016, 24(6): A612-A634.

[24] Sun Z Q, Lv Y F, Lu S. An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces[J]. Journal of Quantitative Spectroscopy and Ratiative Transfer, 2015, 163: 102-119.

[25] Schaepman-Strub G, Schaepman M E, Painter T H, et al. Reflectance quantities in optical remote sensing-definitions and case studies[J]. Remote Sensing of Environment, 2006, 103(1): 27-42.

[26] Sandmeier S, Muller C, Hosgood B, et al. Physical mechanisms in hyperspectral BRDF data of grass and watercress[J]. Remote Sensing of Environment, 1998, 66(2), 222-233.

孙仲秋, 赵云升. 基于地表偏振反射模型的植被冠层偏振反射特性研究[J]. 激光与光电子学进展, 2016, 53(10): 102802. Sun Zhongqiu, Zhao Yunsheng. Polarized Reflectance Characteristics of Vegetation Canopies Based on Polarization Reflection Model[J]. Laser & Optoelectronics Progress, 2016, 53(10): 102802.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!