Frontiers of Optoelectronics, 2018, 11 (2): 107–115, 网络出版: 2018-10-07   

Broadband linearization for 5G fronthaul transmission

Broadband linearization for 5G fronthaul transmission
作者单位
iPhotonics Labs, Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, H3G1M8, Canada
摘要
Abstract
5G is emerging, but the current fronthaul transmission technologies used for 3G and 4G may not be efficient and appropriate for 5G. It has been found that frequency division multiple access (FDMA) and timedivision multiple access (TDMA) based radio over fiber (RoF) may be considered the most appropriate for 5G fronthaul transmission technology. Due to analog RoF transmission, broadband linearization is required. In this work, both electrical and optical broadband linearization techniques are reviewed.
参考文献

[1] Third generation partnership project (3GPP) releases 10-15, 2011–2017

[2] Asai T. 5G radio access network and its requirements on mobile optical networks. In: Proceedings of International Conference on Optical Network Design and Modeling (ONDM). Pisa, Italy, 2015, 7–11

[3] Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, 52(2): 74–80

[4] Liu X, Zeng H, Chand N, Effenberger F. Efficient mobile fronthaul via DSP-based channel aggregation. Journal of Lightwave Technology, 2016, 34(6): 1556–1564

[5] Liu X, Effenberger F. Emerging optical access network technologies for 5G wireless. Journal of Optical Communications and Networking, 2016, 8(12): B70–B79

[6] Zeng H, Liu X, Megeed S, Chand N, Effenberger F. Real-time demonstration of CPRI compatible efficient mobile fronthaul using FPGA. Journal of Lightwave Technology, 2017, 35(6): 1241–1247

[7] Kani J, Terada J, Suzuki K, Otaka A. Solutions for future mobile fronthaul and access network convergence. Journal of Lightwave Technology, 2017, 35(3): 527–534

[8] Liu X, Zeng H, Chand N, Effenberger F. CPRI compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI equivalent data rate in a single 10-GHz bandwidth IMDD channel. In: Proceedings of Optical Fiber Communications (OFC) Conference. Anaheim, CA, 2016, Paper W1H.3

[9] Zhang X, Zhu R, Shen D, Liu T. Linearization technologies for broadband radio-over-fiber transmission systems. MDPI Photonics, 2014, 1(1): 455–472

[10] Shen Y, Hraimel B, Zhang X, Cowan G, Wu K, Liu T. A novel analog broadband RF predistortion circuit to linearize electroabsorption modulator in multiband OFDM ultra-wideband radio over fiber systems. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3327–3335

[11] Zhu R, Zhang X, Shen D, Liu T. Broadband analog predistortion circuit using zero bias detector diodes for radio over fiber systems. IEEE Photonics Technology Letters, 2013, 25(21): 2101–2104

[12] Zhu R, Zhang X, Shen D, Zhang Y. Ultra broadband predistortion circuit for radio-over-fiber transmission systems. Journal of Lightwave Technology, 2016, 34(22): 5137–5145

[13] Zhang X, Saha S, Zhu R, Liu T, Shen D. Analog pre-distortion circuit for radio over fiber transmission. IEEE Photonics Technology Letters, 2016, 28(22): 2541–2544

[14] Wood J. Behavioral Modeling and Linearization of RF Power Amplifiers. Boston: Artech House, 2014

[15] Tang W. Envelope-assisted RF digital predistortion for broadband radio-over-fiber transmission with RF amplifier. Dissertation for the Master Degree. Montreal: Concordia University, 2017

[16] Bassam S, Helaoui M, Ghannouchi F. 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(10): 2547–2553

[17] Xie X. Combined linearization of both analog and digital predistortion for broadband radio over fiber transmission. Dissertation for the Master Degree. Montreal: Concordia University, 2017

[18] Masella B, Hraimel B, Zhang X. Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator. Journal of Lightwave Technology, 2009, 27(15): 3034–3041

[19] Hraimel B, Zhang X. Characterization and compensation of AMAM and AM-PM distortion in mixed polarization radio over fiber systems. In: Proceedings of IEEE/MTT-S International Microwave Symposium Digest . Montreal, QC, 2012, 1–3

[20] Hraimel B, Zhang X, Liu T, Xu T, Nie Q, Shen D. Performance enhancement of an OFDM ultra-wideband transmission-over-fiber link using a linearized mixed-polarization single-drive X-cut Mach-Zehnder modulator. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(10): 3328–3338

[21] Hraimel B, Zhang X, Jiang W, Wu K, Liu T, Xu T, Nie Q, Xu K. Experimental demonstration of mixed-polarization to linearize electro-absorption modulators in radio-over-fiber links. IEEE Photonics Technology Letters, 2011, 23(4): 230–232

[22] Hraimel B, Zhang X. Performance improvement of radio-over fiber links using mixed-polarization electro-absorption modulator. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3239–3248

[23] Hraimel B, Zhang X. Suppression of radio over fiber system nonlinearity using a semiconductor optical amplifier and mixed polarization. In: Proceedings of Optical Fiber Communication (OFC) Conference. Anaheim, CA, 2013, Paper JTh2A.59

[24] Chen X, Li W, Yao J. Microwave photonic link with improved dynamic range using a polarization modulator. IEEE Photonics Technology Letters, 2013, 25(14): 1373–1376

[25] Li W, Yao J. Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop. Optics Express, 2013, 21(13): 15692–15697

[26] Zhu R, Shen D, Zhang X, Liu T. Analysis of dual wavelength linearization technique for radio-over-fiber systems with electroabsorption modulator. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8): 2692–2702

. Broadband linearization for 5G fronthaul transmission[J]. Frontiers of Optoelectronics, 2018, 11(2): 107–115. Xiupu ZHANG. Broadband linearization for 5G fronthaul transmission[J]. Frontiers of Optoelectronics, 2018, 11(2): 107–115.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!