激光与光电子学进展, 2018, 55 (8): 080001, 网络出版: 2018-08-13   

软玻璃光纤中红外超连续谱研究进展 下载: 972次

Research Progress of Mid-Infrared Supercontinuum in Soft Glass Fiber
作者单位
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 澳大利亚阿德莱德大学光子和先进传感研究所, 阿德莱德 SA 5005
摘要
软玻璃光纤在中红外超连续谱的产生方面有广泛的应用,是目前研究的热点。综述了氟化物光纤、碲酸盐光纤以及硫化物光纤中产生中红外超连续谱的研究进展。在氟化物光纤中产生了目前最高功率的中红外超连续谱;碲酸盐光纤特别是微结构碲酸盐光纤在中红外超连续谱中的应用十分广泛;在硫化物光纤中产生了目前最宽的中红外超连续谱。
Abstract
Soft glass fibers have been widely applied in generation of mid-infrared supercontinuum, and have become a research focus. This article reviews the research progress of mid-infrared supercontinuum in fluoride fibers, tellurite fibers and chalcogenide glass fibers. The highest power of mid-infrared supercontinuum has been achieved in the fluoride glass fiber; tellurite glass fibers (in particular, microstructured) are widely applied in the mid-infrared supercontinuum; and chalcogenide glass fibers have been found to possess the broadest mid-infrared supercontinuum.
参考文献

[1] 罗韵, 梁小宝, 李超, 等. 超连续谱激光对生物荧光激发效应的影响[J]. 激光与光电子学进展, 2016, 53(12): 121401.

    Luo Y, Liang X B, Li C, et al. Influence of supercontinuum laser on bioluminescence imaging technology[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121401.

[2] Michaels C A, Masiello T, Chu P M. Fourier transform spectrometry with a near infrared supercontinuum source[J]. Applied Spectroscopy, 2009, 63(5): 538-543.

[3] Kumar M, Islam M N, Terry F L, et al. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source[J]. Applied Optics, 2012, 51(15): 2794-2807.

[4] Swiderski J. High-power mid-infrared supercontinuum sources: current status and future perspectives[J]. Progress in Quantum Electronics, 2014, 38(5): 189-235.

[5] Liu K, Liu J, Shi H, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 2014, 22(20): 24384-24391.

[6] Swiderski J, Michalska M, Kieleck C, et al. High power supercontinuum generation in fluoride fibers pumped by 2 μm pulses[J]. IEEE Photonics Technology Letters, 2014, 26(2): 150-153.

[7] Bartula R, Hagen C, Walewski J, et al. Generation of pulsed ultra-violet and mid-infrared super-continua in standard single-mode fiber[J]. IEEE Photonics Technology Letters, 2006, 18: 91-93.

[8] Chen X, Kumar M, Cheng M, et al. Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power[J]. Optics Express, 2007, 15(3): 865-871.

[9] Qin G, Yan X, Liao M, et al. Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Applied Physics Letters, 2010, 95: 161103.

[10] Heidt A, Price J, Baskiotis C, et al. Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 μm[J]. Optics Express, 2013, 21(20): 24281-24287.

[11] Yang W, Zhang B, Xue G, et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Letters, 2014, 39(7): 1849-1852.

[12] Zheng Z, Zhao J, Liu M, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 2016, 4(4): 135-139.

[13] Jiang X, Joly N, Finger M, et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber[J]. Nature Photonics, 2015, 9: 133-139.

[14] Bei J, Foo H, Qian G, et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 2014, 4(6): 1213-1226.

[15] Théberge F, Daigle J, Vincent D. Mid-infrared supercontinuum generation in fluoroindate fiber[J]. Optics Letters, 2013, 38(22): 4683-4685.

[16] Salem R, Jiang Z, Liu D, et al. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 μm[J]. Optics Express, 2015, 23(24): 30593-30602.

[17] 高鹏飞, 李晓辉, 罗文峰, 等. 抽运波长对中红外超连续谱影响的数值模拟[J]. 中国激光, 2017, 44(7): 0703023.

    Gao P F, Li X H, Luo W F, et al. Numerical simulation of effect of pump wavelength on mid-infrared supercontinuum[J]. Chinese Journal of Lasers, 2017, 44(7): 0703023.

[18] Michalska M, Mikolajczyk J, Wojtas J, et al. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses[J]. Science Reports, 2016, 6: 39138.

[19] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm[J]. Proceedings of SPIE, 2013, 8898: 889808.

[20] Kedenburg S, Steinle T, Mrz F, et al. Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths[J]. Applied Physics Letters, 2016, 1(8): 086101.

[21] Kedenburg S, Strutynski C, Kibler B, et al. High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 μm in robust step-index tellurite fibers[J]. Journal of the Optical Society of America B, 2017, 34(3): 601-607.

[22] Shi H, Feng X, Tan F, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optics Express, 2016, 6(12): 3967-3076.

[23] Domachuk P, Wolchove N, Cronin-Golomb M, et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 2008, 16(10): 7161-7168.

[24] Feng X, Loh W, Flanagan J, et al. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications[J]. Optics Express, 2008, 16(18): 13651-13656.

[25] Liao M, Chaudhari C, Qin G, et al. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation[J]. Optics Express, 2009, 17(14): 12174-12182.

[26] Qin G, Yan X, Kito C, et al. Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation[J]. Journal of Applied Physics, 2010, 107(4): 043108.

[27] Savelii I, Mouawad O, Fatome J, et al. Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers[J]. Optics Express, 2012, 20(24): 27083-27093.

[28] Belal M, Xu L, Horak P, et al. Mid-infrared supercontinuum generation in suspended core tellurite micro structured optical fibers[J]. Optics Letters, 2015, 40(10): 2237-2240.

[29] Klimczak M, Stepniewski G, Bookey H, et al. Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560 nm[J]. Optics Letters, 2013, 38(22): 4679-4682.

[30] Gattass R, Shaw L, Nguyen V, et al. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 2012, 18: 345-348.

[31] Petersen C, Mller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular ngerprint region using ultra-high NA chalcogenide step-index bre[J]. Nature Photonics, 2014, 8: 830-834.

[32] Zhao Z, Wang X, Dai S, et al. 1.5-14 μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(22): 5222-5225.

[33] Zhao Z, Wu B, Wang X, et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode ber[J]. Laser & Photonics Reviews, 2017, 11(2): 1700005.

[34] Mouawad O, Picot-Clémente J, Amrani F, et al. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers[J]. Optics Letters, 2014, 39(9): 2684-2687.

[35] Han X, You C, Dai S, et al. Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core ber[J]. Optical Fiber Technology, 2017, 34: 74-79.

[36] Liu L, Cheng T, Nagasaka K, et al. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion[J]. Optics Letters, 2016, 41(2): 392-395.

[37] Jamatia P, Saini T, Kumar A, et al. Design and analysis of a highly nonlinear composite photonic crystal fiber for supercontinuum generation: visible to mid-infrared[J]. Applied Optics, 2016, 55(24): 6775-6781.

[38] Wu Y. 2-10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber[J]. Laser Physics Letters, 2013, 10(9): 095107.

[39] Diouf M, Salem A, Cherif R, et al. High power broadband mid-infrared supercontinuum fiber laser using a novel chalcogenide AsSe2 photonic crystal fiber[J]. Optical Materials, 2016, 55: 10-16.

[40] Zhang P, Ma B, Zhang J, et al. Simulation study of mid-infrared supercontinuum generation in Ge23Sb12S65-based chalcogenide photonic crystal fiber[J]. Optik, 2016, 127: 2732-2736.

[41] 殷科, 张斌, 蔡振, 等. 光纤抽运2.0~5.5 μm光谱平坦型中红外超连续谱光源[J]. 中国激光, 2016, 43(12): 1215001

    Yin K, Zhang B, Cai Z, et al. Fiber-pumped 2.0-5.5 μm supercontinuum laser source[J]. Chinese Journal of Lasers, 2016, 43(12): 1215001.

[42] Yin K, Zhang B, Yang L, et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm[J]. Optics Letters, 2017, 42(12): 2334-2337.

[43] Yang W, Zhang B, Yin K, et al. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Express, 2013, 21(17): 19732-19742.

[44] Swiderski J, Michalska M. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared[J]. Optics Letters, 2014, 39(4): 910-913.

[45] Yin K, Zhang B, Yao J, et al. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers[J]. Optics Letters, 2016, 41(5): 946-949.

[46] Swiderski J, Michalska M, Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system[J]. Optics Express, 2013, 21(7): 7851-7857.

[47] Gauthier J, Fortin V, Carrée J, et al. Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber[J]. Optics Letters, 2016, 41(8): 1756-1759.

[48] Yao J, Zhang B, Yin K, et al. Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source[J]. Optics Express, 2016, 24(13): 15093-15100.

[49] Luo B, Wang Y, Dai S, et al. Mid-infrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA[J]. Journal of Lightwave Technology, 2017, 35(12): 2464-2469.

[50] Zhang P, Yang P, Wang X, et al. Broadband mid-infrared supercontinuum generation in 1-meter-long As2S3-based fiber with ultra-large core diameter[J]. Optics Express, 2016, 24(25): 28400-28408.

[51] Robichaud L, Fortin V, Gauthier J, et al. Compact 3-8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber[J]. Optics Letters, 2016, 41(20): 4605-4608.

[52] Zhang B, Yu L, Zhai C, et al. High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber[J]. Journal of the American Ceramic Society, 2016, 99(8): 2565-2568.

[53] Cheng T, Nagasaka K, Tuan T, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9): 2117-2120.

[54] Gao W, Amraoui M, Liao M, et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Optics Express, 2013, 21(8): 9573-9583.

[55] Mller U, Yu Y, Kubat I, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 2015, 23(3): 3282-3291.

黎宇, 廖梅松, 薛天锋, 贝家芳, 胡丽丽, 张龙. 软玻璃光纤中红外超连续谱研究进展[J]. 激光与光电子学进展, 2018, 55(8): 080001. Li Yu, Liao Meisong, Xue Tianfeng, Bei Jiafang, Hu Lili, Zhang Long. Research Progress of Mid-Infrared Supercontinuum in Soft Glass Fiber[J]. Laser & Optoelectronics Progress, 2018, 55(8): 080001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!