光子学报, 2015, 44 (7): 0706003, 网络出版: 2015-08-25   

9.2 GHz频率信号50 km光纤传递

9.2 GHz Microwave Frequency Transmission via 50 km Optical Fiber
作者单位
1 西安石油大学 理学院, 西安 710065
2 中国科学院国家授时中心 时间频率重点实验室, 西安 710600
摘要
基于相位共轭稳相方法研制微波频率传递系统, 简化传递系统光路, 实现光纤微波频率传递链路噪声的实时补偿, 完成50 km光纤9.2 GHz超稳微波频率传递实验.该系统采用模块化设计, 由微波参考信号生成模块、相位补偿模块、光纤传递模块组成.在实验室环境下经过9 d的连续测试, 结果表明, 自由运转时频率传递的稳定度(标准阿伦方差)为4.2E-13@1 s, 4.3E-14@1 d; 补偿后频率传递系统的稳定度达到5.8E-14@1 s, 1.9E-17@1 d.该系统能够满足百公里范围内的超稳微波原子钟频率传递需求.
Abstract
Based on the method of phase conjugation stabilization, a real-time noise cancellation system was proposed. The system which is a modular structure, is composed of microwave reference signal generating, phase compensation and optical fiber transmission module. The experimental results of our ultra-stable 9.2 GHz frequency transfer via a 50 km fiber spool were shown. In 9 days laboratry measurement, the system exhibits frequency transfer stabilities (standard Allan deviation) of 4.2E-13@1s/4.3E-14@1day for freE-running and 5.8E-14@1s/1.9E-17@1day for noisE-compensated link. This system match the requirement of 100 km scale frequency transfer of ultra-stable microwave atomic clocks.
参考文献

[1] GUENA J, ABGRALL M, ROVERA D, et al. Progress in Atomic Fountains at LNE-SYRTE[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2012, 59(3): 391-410.

[2] HEAVNER T P, DONLEY E A, LEVI F, et al. First accuracy evaluation of NIST-F2[J]. Metrologia, 2014, 51(3): 174-182.

[3] HINKLEY N, SHERMAN J A, PHILLIPS N B, et al. An atomic clock with 10(-18) instability[J]. Science, 2013, 341(6151): 1215-1218.

[4] BLOOM B J, NICHOLSON T L, WILLIAMS J R, et al. An optical lattice clock with accuracy and stability at the 10(-18) level[J]. Nature, 2014, 506(7486): 71-75.

[5] CHOU C W, HUME D B, ROSENBAND T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999): 1630-1633.

[6] YCAS G G, QUINLAN F, DIDDAMS S A, et al. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb[J]. Optics Express, 2012, 20(6): 6631-6643.

[7] DIDDAMS S A, HOLLBERG L, MBELE V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 2007, 445(7128): 627-630.

[8] CODDINGTON I, SWANN W C, NENADOVIC L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356.

[9] LUTES G F. 12th Ann. Precise time and time interval appl. and planning meeting[C]. Pasadena: In NASA. Goddard Space Flight Center Proc., 1981, 663-680.

[10] PIESTER D, BAUCH A, BREAKIRON L, et al. Time transfer with nanosecond accuracy for the realization of international atomic time[J]. Metrologia, 2008, 45(2): 185-198.

[11] 梁双有, 张健康, 李立中. 光纤时间传输及相位补偿[J]. 时间频率学报, 2008, 31(02): 147-156.

    LIANG Shuang-you, LI Li-zhong, ZHANG Jian-kang, TimE-frequency transfer via optic fiber and phase compensation[J].Journal of timE-frequency, 2008, 31(02): 147-156.

[12] MA L S, JUNGNER P, YE J, et al. Delivering the same optical frequency at 2 places-accurate cancellation of phase noise introduced by an optical-fiber or other timE-varying path[J]. Optics Letters, 1994, 19(21): 1777-1779.

[13] FOREMAN S M, HOLMAN K W, HUDSON D D, et al. Remote transfer of ultrastable frequency references via fiber networks[J]. Review of Scientific Instruments, 2007, 78(2): 021101.

[14] DAUSSY C, LOPEZ O, AMY-KLEIN A, et al. Long-distance frequency dissemination with a resolution of 10(-17)[J]. Physical Review Letters, 2005, 94(20): 203904.

[15] LOPEZ O, AMY-KLEIN A, LOURS M, et al. High-resolution microwave frequency dissemination on an 86-km urban optical link[J]. Applied Physics B-Lasers and Optics, 2010, 98(4): 723-727.

[16] JIANG H, KEFELIAN F, CRANE S, et al. Long-distance frequency transfer over an urban fiber link using optical phase stabilization[J]. Journal of the Optical Society of America B-Optical Physics, 2008, 25(12): 2029-2035.

[17] PREDEHL K, GROSCHE G, RAUPACH S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.

[18] MARRA G, MARGOLIS H S, RICHARDSON D J. Dissemination of an optical frequency comb over fiber with 3 x 10(-18) fractional accuracy[J]. Optics Express, 2012, 20(2): 1775-1782.

[19] WANG B, GAO C, CHEN W L, et al. Precise and continuous time and frequency synchronisation at the 5x10(-19) accuracy level[J]. Scientific Reports, 2012, 2: 556.

[20] NING B, ZHANG S Y, HOU D, et al. High-precision distribution of highly stable optical pulse trains with 8.8 x 10(-19) instability[J]. Scientific Reports, 2014, 4: 5109.

[21] PRIMAS L, LUTES G, SYDNOR R. Proceedings of the 42nd annual frequency control symposium[C]. New York: IEEE, 1988, 478-484.

孟森, 郭文阁, 赵文宇, 闫露露, 张旋, 姜海峰, 张首刚. 9.2 GHz频率信号50 km光纤传递[J]. 光子学报, 2015, 44(7): 0706003. MENG Sen, GUO Wen-ge, ZHAO Wen-yu, YAN Lu-lu, ZHANG Xuan, JIANG Hai-feng, ZHANG Shou-gang. 9.2 GHz Microwave Frequency Transmission via 50 km Optical Fiber[J]. ACTA PHOTONICA SINICA, 2015, 44(7): 0706003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!