激光与光电子学进展, 2021, 58 (9): 0900003, 网络出版: 2021-05-12   

激光功率计发展及应用 下载: 1174次

Development and Applications of Laser Power Meter
作者单位
天津大学精密测试技术及仪器国家重点实验室,微纳制造实验室,天津 300072
引用该论文

陈舒凡, 房丰洲. 激光功率计发展及应用[J]. 激光与光电子学进展, 2021, 58(9): 0900003.

Shufan Chen, Fengzhou Fang. Development and Applications of Laser Power Meter[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900003.

参考文献

[1] Webb J H. Stimulated emission and Bose‍‒‍Einstein statistics[J]. American Journal of Physics, 1972, 40(6): 850-853.

[2] 陈敬全. 梅曼和世界上第一台激光器[J]. 现代物理知识, 1994, 6(1): 18-20.

    Chen J Q. Maiman and the world's first laser[J]. Modern Physics, 1994, 6(1): 18-20.

[3] Zhou Z G, Zhang K S, Zhou J H, et al. Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks[J]. Optics & Laser Technology, 2015, 73: 173-178.

[4] Guo W, Wang H, Peng P, et al. Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy[J]. Corrosion Science, 2020, 170: 108655.

[5] 姜德生, 何伟. 光纤光栅传感器的应用概况[J]. 光电子·激光, 2002, 13(4): 420-430.

    Jiang D S, He W. Review of applications for fiber Bragg grating sensors[J]. Journal of Optoelectronics·Laser, 2002, 13(4): 420-430.

[6] 左铁钏, 施定远, 陈铠, 等. 激光加工技术的优势及在工业生产中的应用[J]. 激光杂志, 1999, 20(4): 8-9.

    Zuo T C, Shi D Y, Chen K, et al. Advantage of the laser processing technology and the application in industry[J]. Laser Journal, 1999, 20(4): 8-9.

[7] 傅中明, 李德明. 激光加工技术在工程机械制造中的应用与发展趋势[J]. 金属加工(热加工), 2020(6): 10-13.

    Fu Z M, Li D M. Application and development trend of laser processing technology in construction machinery manufacturing[J]. MW Metal Forming, 2020(6): 10-13.

[8] 刘险峰, 张志刚. 激光切割技术在筛板加工中的应用研究[J]. 科技创新与应用, 2020(18): 119-120.

    Liu X F, Zhang Z G. Application research of laser cutting technology in sieve plate processing[J]. Technology Innovation and Application, 2020(18): 119-120.

[9] 孟昭山, 赵锐. 激光扫描应用的关键技术问题综述[J]. 测绘与空间地理信息, 2009, 32(6): 60-62.

    Meng Z S, Zhao R. Review on the key technical problems of the application of laser scanning[J]. Geomatics & Spatial Information Technology, 2009, 32(6): 60-62.

[10] Maiman T H, Hoskins R H, D'Haenens I J, et al. Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby[J]. Physical Review, 1961, 123(4): 1151.

[11] Li T Y, Sims S D. A calorimeter for energy measurements of optical masers[J]. Applied Optics, 1962, 1(3): 325-328.

[12] Martin J E, Fox N P, Key P J, et al. A cryogenic radiometer for absolute radiometric measurements[J]. Metrologia, 1985, 21(3): 147-155.

[13] 黄振国, 李前康. 全波段快响应激光功率计[J]. 中国激光, 1982, 9(12): 786-788.

    Huang Z G, Li Q K. Laser power meter with fast time response at full spectral range[J]. Chinese Journal of Lasers, 1982, 9(12): 786-788.

[14] West E D, Churney K L. Theory of isoperibol calorimetry for laser power and energy measurements[J]. Journal of Applied Physics, 1970, 41(6): 2705-2712.

[15] Soni R K, Mandloie V K, Pote M B, et al. Spinning cone water film power meter for high-power CO2 lasers[J]. Optics & Laser Technology, 2007, 39(1): 196-201.

[16] Faaland R W, Naiman M L. Laser power measurement standards: a comparison of two scales[J]. IM-, 1987, 36(2): 455-457.

[17] 原荣. AY2492型高灵敏度光功率计[J]. 电子技术应用, 1985, 11(4): 28-33.

    Yuan R. AY2492 high sensitivity optical power meter[J]. Application of Electronic Technique, 1985, 11(4): 28-33.

[18] 张翔, 陈涛, 金操帆, 等. 便携式光源、光功率计系统开发与设计[J]. 激光与光电子学进展, 2019, 56(21): 212301.

    Zhang X, Chen T, Jin C F, et al. Design and development of portable light source and power meter system[J]. Laser & Optoelectronics Progress, 2019, 56(21): 212301.

[19] 伊红晶, 壮凌, 檀慧明, 等. 测量瓦级激光的光电型功率计的研制[J]. 激光与红外, 2006, 36(7): 590-592.

    Yi H J, Zhuang L, Tan H M, et al. The study of photoelectric power meter for measuring W-class laser[J]. Laser & Infrared, 2006, 36(7): 590-592.

[20] 张晓峻, 康崇, 孙晶华, 等. 多功能光功率计研制[J]. 物理实验, 2015, 35(5): 34-36, 42.

    Zhang X J, Kang C, Sun J H, et al. Multifunctional optical power meter[J]. Physics Experimentation, 2015, 35(5): 34-36, 42.

[21] 杨彦伟. 光通信中高速PIN光探测器的电容特性研究[D]. 北京: 北京邮电大学, 2019.

    Yang Y W. Research on capacitance characteristics of high speed PIN photodetector in optical communication[D]. Beijing: Beijing University of Posts and Telecom, 2019.

[22] 陈炳甲, 赵庆添. 硅PIN光电二极管零偏压使用的性能测试[J]. 半导体光电, 1980, 1(1): 43-52, 63.

    Chen B J, Zhao Q T. Performance test for silicon PIN photodiode at zero bias[J]. Semiconductor Optoelectronics, 1980, 1(1): 43-52, 63.

[23] 周真, 杨军, 秦勇, 等. 基于PIN光电二极管的光功率计[J]. 仪表技术与传感器, 2013(6): 43-45.

    Zhou Z, Yang J, Qin Y, et al. Design of optical power meter based on PIN photodiode[J]. Instrument Technique and Sensor, 2013(6): 43-45.

[24] 刘洋, 郝东阳, 吕勇, 等. 基于电荷积分采样技术的低信噪比激光功率测量技术研究[J]. 激光杂志, 2018, 39(10): 24-27.

    Liu Y, Hao D Y, Lü Y, et al. Power measurement technique of low SNR Laser signal based on charge integration sampling[J]. Laser Journal, 2018, 39(10): 24-27.

[25] 刘华安. 基于二硫化钼或硒化砷覆层及侧边抛磨光纤的全光光功率探测器[D]. 广州: 暨南大学, 2016.

    Liu H A. Optical power detector based on side polished fiber and MoS2 or As2Se3 films[D]. Guangzhou: Jinan University, 2016.

[26] 曾贤贵, 夏晶, 胡同欢, 等. 基于锁相放大器和LabVIEW的激光功率测量系统[J]. 激光技术, 2015, 39(3): 295-299.

    Zeng X G, Xia J, Hu T H, et al. Laser power measurement systems based on lock-in amplifiers and Lab-VIEW[J]. Laser Technology, 2015, 39(3): 295-299.

[27] 廖平, 许伟坚. 基于微弱光信号检测的光功率计[J]. 仪表技术与传感器, 2017(7): 32-35.

    Liao P, Xu W J. Optical power meter design based on weak signal detection[J]. Instrument Technique and Sensor, 2017(7): 32-35.

[28] 徐锋, 高光煌. 激光功率计设计概述[J]. 医疗卫生装备, 1998, 19(5): 19-21.

    Xu F, Gao G H. Overview of laser power meter design[J]. Medical Equipment Journal, 1998, 19(5): 19-21.

[29] 孙超, 韩顺利, 闫继送, 等. 一种高灵敏度近红外光纤光功率计的设计[J]. 红外, 2018, 39(4): 22-26.

    Sun C, Han S L, Yan J S, et al. Design of a high sensitivity near infrared fiber-optical power meter[J]. Infrared, 2018, 39(4): 22-26.

[30] Gunn S R. Calorimetric measurements of laser energy and power[J]. Journal of Physics E: Scientific Instruments, 1973, 6(2): 105-114.

[31] 谢永杰, 段刘华, 戢运峰, 等. 高能激光量热式能量探头的研制[J]. 红外与激光工程, 2006, 35(S3): 80-84.

    Xie Y J, Duan L H, Ji Y F, et al. Development of calorimetric detector for high energy laser energy measurement[J]. Infrared and Laser Engineering, 2006, 35(S3): 80-84.

[32] 于帅, 黎高平, 桑鹏, 等. 工作于非标准环境下体吸收型激光能量计的研制[J]. 应用光学, 2009, 30(4): 646-649.

    Yu S, Li G P, Sang P, et al. Bulk absorption laser calorimeter operating in non-standard environment[J]. Journal of Applied Optics, 2009, 30(4): 646-649.

[33] 蒋刚刚, 薛琳, 朱彤, 等. 基于LPC1754的高精度激光功率计设计[J]. 仪表技术与传感器, 2019(3): 55-58.

    Jiang G G, Xue L, Zhu T, et al. Design of high precision laser power meter based on LPC1754[J]. Instrument Technique and Sensor, 2019(3): 55-58.

[34] 隋成华, 徐之力, 徐丹阳, 等. 基于Wi-Fi通讯的大功率光功率计的研制[J]. 传感技术学报, 2019, 32(1): 155-160.

    Sui C H, Xu Z L, Xu D Y, et al. A research of high-power optical power meter based on Wi-Fi communications[J]. Chinese Journal of Sensors and Actuators, 2019, 32(1): 155-160.

[35] 李竞男, 鲍爱达, 秦丽, 等. 基于高性能黑硅MEMS热电堆的激光功率测试方法[J]. 激光与光电子学进展, 2016, 53(11): 112501.

    Li J N, Bao A D, Qin L, et al. Laser power measurement method based on high performance black silicon MEMS thermopile power meter[J]. Laser & Optoelectronics Progress, 2016, 53(11): 112501.

[36] 张东, 高建强, 夏俊雯, 等. 热电型激光功率计监测比测量过程中的不稳定因素分析[J]. 上海计量测试, 2018, 45(4): 39-41, 45.

    Zhang D, Gao J Q, Xia J W, et al. Analysis of unstable factors in the beam splitting ratio measurement with thermoelectric laser power sensors[J]. Shanghai Measurement and Testing, 2018, 45(4): 39-41, 45.

[37] 程康, 孔炜, 郭波, 等. 一种基于电加热式的量热型光功率计[J]. 光通信技术, 2016, 40(4): 36-37.

    Cheng K, Kong W, Guo B, et al. Heat exchanger optical power meter based on electric heating[J]. Optical Communication Technology, 2016, 40(4): 36-37.

[38] Jirmann J. A simple pyroelectric power meter for the FIR range[J]. International Journal of Infrared and Millimeter Waves, 1984, 5(5): 637-642.

[39] Hammerich M, Olafsson A. A versatile, low-cost pyroelectric laser power monitor for the 1 mW to 50 W range[J]. Journal of Physics E: Scientific Instruments, 1988, 21(1): 80-83.

[40] Satapathy S, Wadhawan V K. Fabrication of pyroelectric laser-energy meters and their characterization using Nd∶‍YAG laser of variable pulse-width[J]. Sensors and Actuators A: Physical, 2005, 121(2): 576-583.

[41] Envall J, Kärhä P, Ikonen E, et al. Measurements of fibre optic power using photodiodes with and without an integrating sphere[J]. Metrologia, 2004, 41(4): 353-358.

[42] 瑚琦, 汪敏, 夏志迁, 等. 基于ARM的紫外辐射光功率测量系统设计与实现[J]. 电子测量技术, 2018, 41(13): 124-128.

    Hu Q, Wang M, Xia Z Q, et al. Design and realization of UV radiation optical power measurement system based on ARM[J]. Electronic Measurement Technology, 2018, 41(13): 124-128.

[43] 吴遥, 黎高平, 于帅, 等. 量热式激光能量计热损失系数测定方法的研究[J]. 应用光学, 2008, 29(3): 398-402.

    Wu Y, Li G P, Yu S, et al. Measurement method of thermal loss coefficient of calorimetric laser energy meter[J]. Journal of Applied Optics, 2008, 29(3): 398-402.

[44] 高执中, 王振常, 朴大植, 等. 用电校准辐射计复现发光强度单位—坎德拉[J]. 计量学报, 1983(2): 81-85.

    Gao Z Z, Wang Z C, Piao D Z, et al. The realization of the basic unit for photometry with the electrically calibrated radiometer[J]. Acta Metrologica Sinica, 1983(2): 81-85.

[45] Gan H Y, He Y W, Liu N, et al. Absolute cryogenic radiometer for high accuracy optical radiant power measurement in a wide spectral range[J]. Chinese Optics Letters, 2019, 17(9): 091201.

[46] Livigni D J, Cromer C L, Scott T R, et al. Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter[J]. Metrologia, 1998, 35(6): 819-827.

[47] 李在清, 吕正. 低溫绝对辐射计的发展现状[J]. 现代测量与实验室管理, 1993, 1(6): 13-17.

    Li Z Q, Lü Z. The present state of cryogenic absolute radiometer[J]. Advanced Measurement and Laboratory Management, 1993, 1(6): 13-17.

[48] Williams P A, Hadler J A, Cromer C, et al. Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements[J]. Metrologia, 2018, 55(3): 427-436.

[49] 魏继锋, 张凯, 何均章, 等. 流水式量热计温度测量技术研究[J]. 中国测试, 2009, 35(1): 46-49.

    Wei J F, Zhang K, He J Z, et al. Temperature measurement technology research for water-flowing calorimeters[J]. China Measurement & Test, 2009, 35(1): 46-49.

[50] 刘卫平, 段刘华, 戢运峰, 等. 水循环式激光能量计温度响应建模[J]. 红外与激光工程, 2012, 41(6): 1494-1498.

    Liu W P, Duan L H, Ji Y F, et al. Modeling of temperature response of water-cycled laser calorimeter[J]. Infrared and Laser Engineering, 2012, 41(6): 1494-1498.

[51] . 激光大功率计量标准的研制[J]. 中国激光, 1978, 5(3): 21-26.

    . Development of laser high power measurement standard[J]. Chinese Journal of Lasers, 1978, 5(3): 21-26.

[52] Mitri F G. Electromagnetic radiation force on a perfect electromagnetic conductor (PEMC) circular cylinder[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 233: 21-28.

[53] Hsueh Y C, Yang L F, Webb K J, et al. Enhanced optical pressure with asymmetric cavities[J]. Physical Review B, 2019, 99(4): 045437.

[54] Požar T, Laloš J, Babnik A, et al. Isolated detection of elastic waves driven by the momentum of light[J]. Nature Communications, 2018, 9: 3340.

[55] Chu Y J L, Jansson E M, Swartzlander G A, et al. Measurements of radiation pressure owing to the grating momentum[J]. Physical Review Letters, 2018, 121(6): 063903.

[56] Manske E, Fröhlich T, Vasilyan S, et al. Photon momentum induced precision small forces: a static and dynamic check[J]. Measurement Science and Technology, 2019, 30(10): 105004.

[57] Brevik I. Remarks on the Abraham-Minkowski problem, in relation to recent radiation pressure experiments[J]. International Journal of Modern Physics A, 2019, 34(28): 1941003.

[58] Ruppin R. Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder[J]. Journal of Electromagnetic Waves and Applications, 2006, 20(13): 1853-1860.

[59] Waddell M B, Chau K J. Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter[J]. Reports on Progress in Physics: Physical Society, 2015, 78(12): 122401.

[60] Vasilyan S, Fröhlich T, Manske E, et al. Total momentum transfer produced by the photons of a multi-pass laser beam as an evident avenue for optical and mass metrology[J]. Optics Express, 2017, 25(17): 20798-20816.

[61] 王洪吉. 介质中电磁场的动量密度和动量流密度[J]. 商丘师范学院学报, 2013, 29(12): 39-41.

    Wang H J. Momentum density and momentum flux density of electromagnetic fields in the media[J]. Journal of Shangqiu Normal University, 2013, 29(12): 39-41.

[62] Williams P A, Hadler J A, Lee R, et al. Use of radiation pressure for measurement of high-power laser emission[J]. Optics Letters, 2013, 38(20): 4248-4251.

[63] Ryger I, Glimpse A B A, Williams P, et al. Micromachined force scale for optical power measurement by radiation pressure sensing[J]. IEEE Sensors Journal, 2018, 18(19): 7941-7948.

[64] Pinot P, Silvestri Z. Optical power meter using radiation pressure measurement[J]. Measurement, 2019, 131: 109-119.

[65] Williams P, Hadler J, Maring F, et al. Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure[J]. Optics Express, 2017, 25(4): 4382-4392.

[66] Agatsuma K, Friedrich D, Ballmer S, et al. Precise measurement of laser power using an optomechanical system[J]. Optics Express, 2014, 22(2): 2013-2030.

[67] Li Z, Gao S, Brand U, et al. Traceable laser power measurement using a micro-machined force sensor with sub-piconewton resolution[C]//2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 0623-27, 2019, Berlin, Germany. New York: IEEE Press, 2019: 1603-1606.

[68] 田健, 邓念平, 吴传昕, 等. 不同量级下激光功率测量方法探讨与研究[J]. 计量与测试技术, 2017, 44(12): 41-42, 46.

    Tian J, Deng N P, Wu C X, et al. Study on laster power measurement method under different orders of magnitude and research[J]. Metrology & Measurement Technique, 2017, 44(12): 41-42, 46.

[69] 高学燕, 周殿华, 周山, 等. 积分球的光功率波形变换理论[J]. 光学学报, 2002, 22(4): 465-469.

    Gao X Y, Zhou D H, Zhou S, et al. Transformation theory of light power waveform by an integrating sphere[J]. Acta Optica Sinica, 2002, 22(4): 465-469.

[70] 陆耀东, 史红民, 齐学, 等. 积分球技术在高能激光能量测量中的应用[J]. 强激光与粒子束, 2000, 12(S1): 106-108.

    Lu Y D, Shi H M, Qi X, et al. Integrated sphere application in the field of powerful laser energy measurement[J]. High Power Laser & Particle Beams, 2000, 12(S1): 106-108.

[71] 孙祉伟, 李伟, 孙同坤, 等. 水冷式积分球功率计[J]. 仪器仪表学报, 1980, 1(4): 102-106.

    Sun Z W, Li W, Sun T K, et al. A water-cooled integrating sphere laser power meter[J]. Chinese Journal of Scientific Instrument, 1980, 1(4): 102-106.

[72] 何文喜, 刘宁宁, 何欣遥, 等. 激光在牙体牙髓病治疗中的应用[J]. 中国实用口腔科杂志, 2015, 8(4): 198-202.

    He W X, Liu N N, He X Y, et al. The application of laser in endodontics[J]. Chinese Journal of Practical Stomatology, 2015, 8(4): 198-202.

[73] 毕卫红, 李敬阳, 杨希鹏, 等. 微波电光调制BOTDR系统中参考光功率稳定控制[J]. 光电工程, 2015, 42(5): 52-57.

    Bi W H, Li J Y, Yang X P, et al. The control of reference light power stability in microwave electro-optic modulation BOTDR system[J]. Opto-Electronic Engineering, 2015, 42(5): 52-57.

[74] 刘溢嘉, 纳全鑫, 张艺轩, 等. 电光Q开关消光比的测量以及影响因素分析[J]. 激光杂志, 2016, 37(3): 79-83.

    Liu Y J, Na Q X, Zhang Y X, et al. Measurement of extinction ratio of electro-optical Q-switcher and analysis of impact factors[J]. Laser Journal, 2016, 37(3): 79-83.

[75] Chi H, Zou X H, Yao J P, et al. An approach to the measurement of microwave frequency based on optical power monitoring[J]. IEEE Photonics Technology Letters, 2008, 20(14): 1249-1251.

[76] Korai U A, Wang Z F, Lacava C, et al. Technique for the measurement of picosecond optical pulses using a non-linear fiber loop mirror and an optical power meter[J]. Optics Express, 2019, 27(5): 6377-6388.

[77] Bazkir Ö, Cenk S, Mahmoud K, et al. Traceability of laser pulse energy measurements by linking reference standards for CW and pulsed measurements[J]. Journal of Physics: Conference Series, 2018, 972: 012013.

[78] 李姗珊, 全智, 卢媛媛, 等. 多速率误码和光功率集成检测系统的研究与开发[J]. 仪表技术与传感器, 2020(1): 112-116.

    Li S S, Quan Z, Lu Y Y, et al. Research and development of multi-rate error and optical power integrated detection system[J]. Instrument Technique and Sensor, 2020(1): 112-116.

[79] Neumann B, Wright S. Fast high power laser power measurement[J]. Photonics Russia, 2018(1): 58-64.

[80] Schmailzl A, Käsbauer J, Martan J, et al. Measurement of core temperature through semi-transparent polyamide 6 using scanner-integrated pyrometer in laser welding[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118814.

[81] 黄丰杰. 车身覆盖件的三维激光切割工艺研究[D]. 长沙: 湖南大学, 2008.

    Huang F J. The research on process of three dimensional laser cutting applied in auto-body panel manufacturing[D]. Changsha: Hunan University, 2008.

[82] 时文远, 董亮. 成像法中波红外激光远场功率测量系统[J]. 光电技术应用, 2015, 30(2): 11-13.

    Shi W Y, Dong L. Mid-IR laser far-field power measurement system based on imaging method[J]. Electro-Optic Technology Application, 2015, 30(2): 11-13.

[83] 孙志红, 王文义, 刘华, 等. 多路激光功率平衡测量技术[J]. 中国激光, 2009, 36(6): 1493-1497.

    Sun Z H, Wang W Y, Liu H, et al. Power balance measurement technique of multi-beam laser[J]. Chinese Journal of Lasers, 2009, 36(6): 1493-1497.

[84] 黎华. 基于OTDR和光功率测试的光纤故障监测应用方法[J]. 计算机测量与控制, 2014, 22(5): 1357-1359.

    Li H. Based on OTDR and light power test of fiber optic fault monitoring application[J]. Computer Measurement & Control, 2014, 22(5): 1357-1359.

[85] 苏宝玺, 陈小君, 吴荣琴, 等. 基于光通信中光损耗的测量与研究[J]. 长春师范大学学报, 2017, 36(12): 19-24.

    Su B X, Chen X J, Wu R Q, et al. Measurement and research of optical loss in optical communication[J]. Journal of Changchun Normal University, 2017, 36(12): 19-24.

[86] 张旭辉, 王陆唐, 方捻, 等. 基于光纤光栅传感技术的工频电场测量研究[J]. 激光与光电子学进展, 2016, 53(2): 020603.

    Zhang X H, Wang L T, Fang N, et al. Study on power frequency electric-field measurements based on fiber Bragg grating sensing technology[J]. Laser & Optoelectronics Progress, 2016, 53(2): 020603.

[87] 钟如涛, 秦应雄, 唐霞辉, 等. 激光功率的微观波动对加工质量的影响[J]. 中国激光, 2010, 37(10): 2638-2641.

    Zhong R T, Qin Y X, Tang X H, et al. Influence of micro-fluctuation of laser power to processing quality[J]. Chinese Journal of Lasers, 2010, 37(10): 2638-2641.

[88] 陆惠宗, 屠明亮, 纪晨东, 等. 激光聚焦偏移测量微小位移方法研究[J]. 仪器仪表学报, 2016, 37(2): 461-466.

    Lu H Z, Tu M L, Ji C D, et al. Micro displacement measurement method based on laser focus deviation[J]. Chinese Journal of Scientific Instrument, 2016, 37(2): 461-466.

[89] 付康, 孙小强, 傅栋博, 等. 通信用光功率计波长敏感性对测量结果的影响[J]. 计量技术, 2018(12): 3-6.

    Fu K, Sun X Q, Fu D B, et al. Influence of wavelength sensitivity of optical power meter for communication on measurement results[J]. Measurement Technique, 2018(12): 3-6.

[90] 孙小强, 傅栋博, 李然, 等. 无源光网络中突发光功率计校准方法的研究[J]. 计量学报, 2016, 37(5): 480-483.

    Sun X Q, Fu D B, Li R, et al. Research on calibration method of burst optical power meterin passive optical network[J]. Acta Metrologica Sinica, 2016, 37(5): 480-483.

[91] 黄水平. 一种同时测量高斯光束束腰位置和半径的新方法[J]. 物理与工程, 2017, 27(4): 30-33.

    Huang S P. A new method for simultaneously measuring waist position and waist radius of Gaussian beam[J]. Physics and Engineering, 2017, 27(4): 30-33.

[92] Scaggs M, Haas G. M-squared laser measurement as simple as measuring laser power[J]. Proceedings of SPIE, 2020, 11266: 112661A.

[93] Scaggs M, Haas G. Self-calibrating, real-time M-square measurement system[J]. Proceedings of SPIE, 2017, 10090: 100901Q.

[94] Yuan W, Wang J T, Song H W, et al. Full-field deformation and temperature measurement for CW laser irradiated structures[J]. Optics and Lasers in Engineering, 2018, 110: 244-252.

[95] 胡友勃, 李健军, 夏茂鹏, 等. 光子计数器的线性测量和修正[J]. 光子学报, 2016, 45(6): 0604001.

    Hu Y B, Li J J, Xia M P, et al. Measurement and correction of linearity of photon counters[J]. Acta Photonica Sinica, 2016, 45(6): 0604001.

[96] 原荣, 区仲明, 马芝云, 等. 纤维光学应用的微光功率计研制报告[J]. 激光通信, 1980, 4(3): 1-7.

    Yuan R, Qu Z M, Ma Z Y, et al. Development report of low light power meter for fiber optics application[J]. Laser communication, 1980, 4(3): 1-7.

[97] 张鹏, 董杰, 韩顺利, 等. 基于塞贝克效应的高响应度太赫兹探测器的研究[J]. 红外技术, 2017, 39(8): 761-765.

    Zhang P, Dong J, Han S L, et al. High responsivity terahertz detector based on Seebeck effect[J]. Infrared Technology, 2017, 39(8): 761-765.

[98] 黎高平, 王雷, 杨照金, 等. 长脉冲高能激光能量测试技术的研究[J]. 光子学报, 2004, 33(9): 1111-1114.

    Li G P, Wang L, Yang Z J, et al. Study on the measurement of long pulse high power laser energy[J]. Acta Photonica Sinica, 2004, 33(9): 1111-1114.

[99] Gao T T, Xu Z W, Fang F Z, et al. High performance surface-enhanced Raman scattering substrates of Si-based Au film developed by focused ion beam nanofabrication[J]. Nanoscale Research Letters, 2012, 7(1): 1-8.

[100] Fang F Z, Cheng Y, Zhang X D, et al. Design of freeform optics[J]. Advanced Optical Technologies, 2013, 2(5/6): 445-453.

[101] Fang F Z, Zhang X D, Weckenmann A, et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals, 2013, 62(2): 823-846.

[102] 房丰洲. 纳米制造基础研究的相关进展[J]. 中国基础科学, 2014, 16(5): 9-15.

    Fang F Z. Fundamental study and progress of nanomanufacturing[J]. China Basic Science, 2014, 16(5): 9-15.

[103] 董贺伟, 郭瑞民, 崔文超, 等. 基于折叠腔的光腔衰荡光谱技术研究[J]. 中国激光, 2020, 47(3): 0311001.

    Dong H W, Guo R M, Cui W C, et al. Cavity ring-down spectroscopy based on folded cavity[J]. Chinese Journal of Lasers, 2020, 47(3): 0311001.

[104] 贺明洋, 李敏, 袁帅, 等. 高功率飞秒自相似光纤激光放大系统[J]. 中国激光, 2020, 47(3): 0308001.

    He M Y, Li M, Yuan S, et al. High-power femtosecond self-similar fiber amplification system[J]. Chinese Journal of Lasers, 2020, 47(3): 0308001.

[105] 王利镇, 李林军, 童利民, 等. 微纳光纤及其锁模激光应用[J]. 光学学报, 2019, 39(1): 0126011.

    Wang L Z, Li L J, Tong L M, et al. Optical microfibers and their applications in mode-locked fiber lasers[J]. Acta Optica Sinica, 2019, 39(1): 0126011.

[106] 焦保刚, 刘洋, 吕勇, 等. 基于相关双采样技术的外场激光功率测量研究[J]. 工具技术, 2017, 51(9): 125-128.

    Jiao B G, Liu Y, Lü Y, et al. Research of field laser power measurement based on correlated double sampling technique[J]. Tool Engineering, 2017, 51(9): 125-128.

[107] 杨冶平, 侯民, 黎高平, 等. 适用于非常规工作环境中热释电型激光能量计的研制[J]. 应用光学, 2012, 33(4): 752-755.

    Yang Y P, Hou M, Li G P, et al. Pyroelectric laser energy meter used in non-regular ambient environment[J]. Journal of Applied Optics, 2012, 33(4): 752-755.

[108] 向莉. 浅议微弱激光功率计的检测方法和技术[J]. 仪器仪表与分析监测, 2017(3): 11-14.

    Xiang L. Discussion on the detecting method and technology of weak laser power meter[J]. Instrumentation Analysis Monitoring, 2017(3): 11-14.

[109] 王权, 李澍, 苏宗文, 等. 激光功率计电磁兼容抗扰度研究[J]. 中国医疗设备, 2015, 30(9): 31-33.

    Wang Q, Li S, Su Z W, et al. Research on EMC anti-interference of laser power meter[J]. China Medical Devices, 2015, 30(9): 31-33.

[110] Bai X. Calibration technology and application of laser power meter[J]. The Journal of Engineering, 2019(23): 8806-8811.

[111] Vayshenker I, Livigni D J, Li X, et al. Optical fiber power meter comparison between NIST and NIM[J]. Journal of Research of the National Institute of Standards and Technology, 2010, 115(6): 433-436.

[112] Vayshenker I, Lehman J H, Livigni D J, et al. Trilateral optical powermeter comparison between NIST, NMIJ/AIST, and METAS[J]. Applied Optics, 2007, 46(5): 643.

[113] 崔磊, 贾亚青, 张建亮, 等. 一种新型光功率计校准方法的研究[J]. 计量技术, 2019(3): 14-16, 25.

    Cui L, Jia Y Q, Zhang J L, et al. Research on a new calibration method of optical power meter[J]. Measurement Technique, 2019(3): 14-16, 25.

陈舒凡, 房丰洲. 激光功率计发展及应用[J]. 激光与光电子学进展, 2021, 58(9): 0900003. Shufan Chen, Fengzhou Fang. Development and Applications of Laser Power Meter[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!