中国激光, 2014, 41 (10): 1002004, 网络出版: 2014-08-12   

百瓦级1030 nm皮秒脉冲掺镱全光纤激光器 下载: 649次

Hundred-Watt-Level 1030 nm Ytterbium-Doped Picosecond All-Fiber LaserSun Ruoyu
作者单位
北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124
摘要
报道了1030 nm高功率被动锁模皮秒脉冲掺镱光纤激光器。该激光器为全光纤结构,采用主振荡功率放大(MOPA)技术,由皮秒种子源与三级掺镱光纤放大器组成。种子源使用半导体可饱和吸收镜(SESAM)进行被动锁模,输出脉冲中心波长为1030.4 nm、3 dB光谱宽度为0.15 nm、脉冲宽度为30.7 ps、重复频率为29.0 MHz、输出功率为30 mW。通过三级掺镱光纤放大器后,最终在30 μm/250 μm双包层掺镱光纤中实现了平均功率为101 W的皮秒脉冲激光输出, 3 dB光谱宽度为1.46 nm,脉冲宽度为36.6 ps,放大器斜率效率为76.7%,单脉冲能量为3.48 μJ,峰值功率为97 kW,光束质量M2=2.78。
Abstract
A high power 1030 nm passively mode-locked ytterbium-doped picosecond fiber laser by master oscillator power amplifier (MOPA) in all-fiber configuration is demonstrated. The laser system consists of the picosecond seed and three stages of ytterbium-doped all-fiber amplifiers. The seed is mode-locked by semiconductor saturable absorber mirror (SESAM). And a stable output is obtained with 30.7 ps pulse width, 29.0 MHz repetition rate, and 30 mW average output power. The laser operates at 1030.4 nm with a spectral width of 0.15 nm. After three stages of fiber amplification, the final output power is scaled up to 101 W in a 30 μm/250 μm double cladding ytterbium-doped fiber with the slope efficiency of 76.7%. The laser performance with the pulse width of 36.6 ps, pulse energy of 3.48 μJ, peak power as high as 97 kW operating at 1030.4 nm with bandwidth of 1.46 nm is achieved, and the beam quality M2 is 2.78.
参考文献

[1] 楼祺洪, 周军, 朱健强, 等. 高功率光纤激光器研究进展[J]. 红外与激光工程, 2006, 35(2): 135-138.

    Lou Qihong, Zhou Jun, Zhu Jianqiang, et al.. Recent progress of high-power fiber lasers[J]. Infrared and Laser Engineering, 2006, 35(2): 135-138.

[2] 罗威, 董文锋, 杨华兵, 等. 高功率激光器发展趋势[J]. 激光与红外, 2013, 43(8): 845-852.

    Luo Wei, Dong Wenfeng, Yang Huabing, et al.. Development trend of high power lasers[J]. Laser & Infrared, 2013, 43(8): 845-852.

[3] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7: 868-874.

[4] Zhao Z, Dunham B M, Wise F W. Generation of 150 W average and 1 MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier[J]. J Opt Soc Am B, 2014, 31(1): 33-37.

[5] Eidam T, Rothhardt J, Stutzki F, et al.. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Opt Express, 2011, 19(1): 255-260.

[6] 柴路, 胡明列, 方晓惠, 等. 光子晶体光纤飞秒激光技术研究进展[J]. 中国激光, 2013, 40(1): 0101001.

    Chai Lu, Hu Minglie, Fang Xiaohui, et al.. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese J Lasers, 2013, 40(1): 0101001.

[7] Zaouter Y, Martial I, Aubry N, et al.. Direct amplification of ultrashort pulses in μ-pulling-down Yb YAG single crystal fibers[J]. Opt Lett, 2011, 36(5): 748-750.

[8] Délen X, Zaouter Y, Martial I, et al.. YbYAG single crystal fiber power amplifier for femtosecond sources[J]. Opt Lett, 2013, 38(2): 109-111.

[9] 张志伟. 薄片式YbYAG激光器及其应用[J]. 强激光与粒子束, 2005, 17(B04): 11-14.

    Zhang Zhiwei. Thin disk YbYAG laser and its applications[J]. High Power Laser and Particle Beams, 2005, 17(B04): 11-14.

[10] Ding Yagian, Qi Yunfeng, Liu Yuan, et al.. Dual-wavelength fiber grating laser in linear overlapping cavity[J]. Chin Opt Lett, 2013, 11(12): 120603.

[11] Victor Khitrov, Bryce Samson, David Machewirth, et al.. 242 W single-mode CW fiber laser operating at 1030 nm lasing wavelength and with 0.35 nm spectral width[C]. Advanced Solid-State Photonics, 2006, WD5.

[12] Li Wenxue, Hao Qiang, Yan Ming, et al.. Tunable flat-top nanosecond fiber laser oscillator and 280 W average power nanosecond Yb-doped fiber amplifier[J]. Opt Express, 2009, 17(12): 10113-10118.

[13] 周翠芸, 刘源, 杜松涛, 等. 1030 nm高重复频率纳秒脉冲全光纤放大器[J]. 中国激光, 2011, 38(8): 0802010.

    Zhou Cuiyun, Liu Yuan, Du Songtao, et al.. 1030 nm High repetition rate nanosecond pulse all fiber amplifier[J]. Chinese J Lasers, 2011, 38(8): 0802010.

[14] 王璞, 刘江. 2.0 μm掺铥超短脉冲光纤激光器研究进展及展望[J]. 中国激光, 2013, 40(6): 0601002.

    Wang Pu, Liu Jiang. Progress and prospect on ultrafast Tm-doped fiber lasers at 2 μm wavelength[J]. Chinese J Lasers, 2013, 40(6): 0601002.

[15] Jin Dongchen, Sun Ruoyu, Shi Hongxing, et al.. Stable passively Q-switched and gain-switched Yb-doped all-fiber laser based on a dual-cavity with fiber Bragg gratings[J]. Opt Express, 2013, 21(22): 26027-26033.

[16] Stolen R H, Lin C. Self-phase-modulation in silica optical fibers[J]. Phys Rev A, 1978, 17(4): 1448.

[17] Kelson I, Hardy A. Optimization of strongly pumped fiber lasers[J]. J Lightwave Technol, 1999, 17(5): 891-897.

孙若愚, 金东臣, 曹镱, 王璞. 百瓦级1030 nm皮秒脉冲掺镱全光纤激光器[J]. 中国激光, 2014, 41(10): 1002004. 孙若愚, 金东臣, 曹镱, 王璞. Hundred-Watt-Level 1030 nm Ytterbium-Doped Picosecond All-Fiber LaserSun Ruoyu[J]. Chinese Journal of Lasers, 2014, 41(10): 1002004.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!