红外与激光工程, 2020, 49 (2): 0203003, 网络出版: 2020-03-10  

海洋光学系统中的时空方法

Temporal and spatial methods in ocean optical systems
张雨凡 1,*徐敬 1,2
作者单位
1 浙江大学 海洋学院 光通信实验室, 浙江 舟山 316021
2 海洋观测-成像试验区浙江省重点实验室, 浙江 舟山 316021
引用该论文

张雨凡, 徐敬. 海洋光学系统中的时空方法[J]. 红外与激光工程, 2020, 49(2): 0203003.

Zhang Yufan, Xu Jing. Temporal and spatial methods in ocean optical systems[J]. Infrared and Laser Engineering, 2020, 49(2): 0203003.

参考文献

[1] Churnside J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2013, 53(5): 051405.

[2] Xu J. Underwater wireless optical communication: why, what, and how?[J]. Chinese Optics Letters, 2019, 17(10): 100007.

[3] Qu F, Wang Z, Yang L, et al. A journey toward modeling and resolving doppler in underwater acoustic communications[J]. IEEE Communications Magazine, 2016, 54(2): 49-55.

[4] Liu D, Xu P, Zhou Y, et al. Lidar remote sensing of seawater optical properties: experiment and monte carlo simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9489-9498.

[5] Abualhin K. Mapping of underwater seabed morphology of the gaza strip coastal zone using remote sensing technique[J]. Earth Sciences Research Journal, 2016, 20(2): 1-7.

[6] Kerfoot W C, Hobmeier M M, Green S A, et al. Coastal ecosystem investigations with LiDAR (Light Detection and Ranging) and bottom reflectance: lake superior reef threatened by migrating tailings[J]. Remote Sensing, 2019, 11(9): 1076.

[7] Su D, Yang F, Ma Y, et al. Classification of coral reefs in the south china sea by combining Airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2): 815-828.

[8] Alem N, Pellen F, Le Jeune B. New microwave modulation LIDAR scheme for naval mine detection[C]//Electro-Optical Remote Sensing XI. International Society for Optics and Photonics, 2017: 1043403.

[9] Filisetti A, Marouchos A, Martini A, et al. Developments and applications of underwater LiDAR systems in support of ocean science[C]//OCEANS 2018 MTS/IEEE Charleston. IEEE, 2018: 1-10.

[10] Liu Bingyi, Li Ruiqi, Yang Qian, et al. Estimation of global detection depth of spaceborne oceanographic lidar in blue-green spectral region[J]. Infrared and Laser Engineering, 2019, 48(1): 128-133. (in Chinese)

[11] Ottaviani M, Foster R, Gilerson A, et al. Airborne and shipborne polarimetric measurements over open ocean and coastal waters: intercomparisons and implications for spaceborne observations[J]. Remote Sensing of Environment, 2018, 206: 375-390.

[12] Zeng Z, Fu S, Zhang H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1): 204-238.

[13] Wang J, Lu C, Li S, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171-12181.

[14] Hong X, Fei C, Zhang G, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 2019, 44(3): 558-561.

[15] Liu X, Yi S, Zhou X, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937-27947.

[16] Strand M P. Imaging model for underwater range-gated imaging systems[C]//Underwater Imaging, Photography, and Visibility. International Society for Optics and Photonics, 1991: 151-160.

[17] Ooi B S, Sun X, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communications[C]//Optical Fiber Communication Conference. Optical Society of America, 2019: M3I. 1.

[18] Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513-521.

[19] Massot-Campos M, Oliver-Codina G. Optical sensors and methods for underwater 3D reconstruction[J]. Sensors, 2015, 15(12): 31525-31557.

[20] Song Hong, Zhang Yunfei, Wu Chaopeng, et al. Calibration method of underwater phase laser ranging[J]. Infrared and Laser Engineering, 2019, 48(4): 0406008. (in Chinese)

[21] Mullen L J, Contarino V M. Hybrid lidar-radar: seeing through the scatter[J]. IEEE Microwave Magazine, 2000, 1(3): 42-48.

[22] Zha B-T, Yuan H-I, Tan Y-Y. Ranging precision for underwater laser proximity pulsed laser target detection[J]. Optics Communications, 2019, 431: 81-87.

[23] Cao Fengmei, Jin Weiqi, Huang Youwei, et al. Review of underwater opto-electrical imaging technology and equipment (I)-Underwater laser range-gated Imaging technology[J]. Infrared Technology, 2011, 33(2): 63-69. (in Chinese)

[24] McLean E, Burris H, Strand M. Short-pulse range-gated optical imaging in turbid water[J]. Applied Optics, 1995, 34(21): 4343-4351.

[25] He D-M, Seet G G. Divergent-beam lidar imaging in turbid water[J]. Optics and Lasers in Engineering, 2004, 41(1): 217-231.

[26] Busck J. Underwater 3-D optical imaging with a gated viewing laser radar[J]. Optical Engineering, 2005, 44(11): 116001.

[27] Wang Yinfei, Zhang Xiaohui, Zhong Wei, et al. Contrast Signal-to-noise model of underwater full range-gated imaging radar based on high-repetion-rate pulse laser[J]. Chinese Journl of Lasers, 2019, 46(7):21-28.(in Chinese)

[28] Jin D, Ji C, Chu X, et al. Simulation analysis of signal-to-noise ratio of the underwater range gating imaging system[C]//Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 2019: 1102357.

[29] Zhuang B, Li C, Wu N, et al. First demonstration of 400 Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//2017 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2017: 1-2.

[30] Li J, Huang Z, Liu X, et al. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems[J]. Optics Express, 2015, 23(1): 611-619.

[31] Li X, Chen H, Li S, et al. Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC[C]// 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, 2017: 616-621.

[32] Fei C, Hong X, Zhang G, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060-34069.

[33] Moore K D, Jaffe J S, Ochoa B L. Development of a new underwater bathymetric laser imaging system: L-bath[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(8): 1106-1117.

[34] Jantzi A, Rumbaugh L, Jemison W. Spatial coherence filtering for scatter rejection in underwater laser systems[C]// Ocean Sensing and Monitoring XI. International Society for Optics and Photonics, 2019: 1101406.

[35] Tang S, Dong Y, Zhang X. On link misalignment for underwater wireless optical communications[J]. IEEE Communications Letters, 2012, 10(16): 1688-1690.

[36] Kong M, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426: 94-98.

[37] Kong M, Lin J, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24): 34542-34551.

[38] Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, challenges, and trends[J]. Chinese Optics Letters, 2019, 17(10): 100002.

[39] Al-Rubaiai M, Tan X. Design and development of an LED-based optical communication system with active alignment control[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2016: 160-165.

[40] Cai C, Zhao Y, Zhang J, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C]//Optical Fiber Communication Conference. Optical Society of America, 2019: M3I. 4.

[41] Brandl P, Schidl S, Polzer A, et al. Optical wireless communication with adaptive focus and MEMS-based beam steering[J]. IEEE Photonics Technology Letters, 2013, 25(15): 1428-1431.

[42] Duan X, Song D, Zou J. Steering Co-centered and Co-directional optical and acoustic beams with a water-immersible MEMS scanning mirror for underwater ranging and communication[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6582-6587.

[43] Zhang H, Dong Y, Hui L. On capacity of downlink underwater wireless optical MIMO systems with random sea surface[J]. IEEE Communications Letters, 2015, 19(12): 2166-2169.

[44] Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communications, 2016, 65(3): 1176-1192.

[45] Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8223-8237.

[46] Song Y, Lu W, Sun B, et al. Experimental demonstration of MIMO-OFDM underwater wireless optical communication[J]. Optics Communications, 2017, 403: 205-210.

[47] Chen X, Lyu W, Yu C, et al. Diversity-reception UWOC system using solar panel array and maximum ratio combining[J]. Optics Express, 2019, 27(23): 34284-34297.

[48] Nevis A J, Hilton R J, Taylor Jr J S, et al. Advantages of three-dimensional electro-optic imaging sensors[C]// Detection and Remediation Technologies for Mines and Minelike Targets VIII. International Society for Optics and Photonics, 2003: 225-237.

[49] Sun Jianfeng, Gao Jian, Wei Jingsong, et al. Research development of under-water detection imaging based on streak tube imaging lidar[J]. Infrared and Laser Engineering, 2010, 39(5): 811-814. (in Chinese)

[50] McLean J W. High-resolution 3D underwater imaging[C]// Airborne and in-Water Underwater Imaging. International Society for Optics and Photonics, 1999: 10-19.

[51] Gleckler A D. Multiple-slit streak tube imaging lidar (MS-STIL) applications[C]//Laser Radar Technology and Applications V. International Society for Optics and Photonics, 2000: 266-278.

[52] Ge Mingda, Sun Jianfeng, Wang Tianjiao, et al. Denoising methods for streak tube imaging lidar range imagebased on contrast-modulation method[J]. Infrared and Laser Engineering, 2013, 42(6): 1448-1452. (in Chinese)

[53] Cui Z, Tian Z, Zhang Y, et al. Research on the underwater target imaging based on the streak tube laser lidar[C]// Young Scientists Forum 2017. International Society for Optics and Photonics, 2018: 107103G.

[54] Hui D, Tian J, Lu Y, et al. Streak tube with large work area and small size used in lidar detection system[J]. Acta Optica Sinica, 2015, 35(12): 318-324. ( in Chinese)

[55] Wang C, Yu H-Y, Zhu Y-J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Optics Express, 2017, 25(23): 28783-28793.

[56] Shen J, Wang J, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18): 23565-23571.

[57] Kong M, Chen Y, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087-3097.

[58] Hamza T, Khalighi M-A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless optical communication links[C]//2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2016: 1-5.

[59] Khalighi M-A, Hamza T, Bourennane S, et al. Underwater wireless optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4): 1-10.

[60] Léon P, Roland F, Brignone L, et al. A new underwater optical modem based on highly sensitive Silicon Photomultipliers[C]//OCEANS 2017-Aberdeen. IEEE, 2017: 1-6.

[61] Shen J, Wang J, Yu C, et al. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output[J]. Optics Communications, 2019, 438: 78-82.

[62] Nie Ruijie, Xu Zhiyong, Zhang Qiheng, et al. Model of electrical characteristics of SiPM array and optimization of front-end design for three-dimensional depth sounder[J]. Optics and Precision Engineering, 2012, 20(8): 1661-1668. (in Chinese)

张雨凡, 徐敬. 海洋光学系统中的时空方法[J]. 红外与激光工程, 2020, 49(2): 0203003. Zhang Yufan, Xu Jing. Temporal and spatial methods in ocean optical systems[J]. Infrared and Laser Engineering, 2020, 49(2): 0203003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!