红外与激光工程, 2020, 49 (2): 0203003, 网络出版: 2020-03-10  

海洋光学系统中的时空方法

Temporal and spatial methods in ocean optical systems
张雨凡 1,*徐敬 1,2
作者单位
1 浙江大学 海洋学院 光通信实验室, 浙江 舟山 316021
2 海洋观测-成像试验区浙江省重点实验室, 浙江 舟山 316021
摘要
海洋光学系统在海洋探索、开发和监测中起到了越来越重要的作用。水下无线光通信、水下激光雷达是两种迅速发展且有良好应用前景的海洋光学系统。水下无线光通信凭借高速率与低延迟的特点在中短距离应用中成为理想的通信选择; 水下激光雷达在获取地理信息、目标探测等应用中也是常用的高精度、高效率的观测方法。然而, 海水信道的复杂光学特性为海洋光学系统性能的进一步提升带来了挑战。在海水信道中, 不仅吸收与散射作用较强, 而且信道中可能有湍流、气泡等动态变化的干扰因素。为应对这些挑战, 一方面可通过时间或空间方法提高信噪比; 另一方面, 时空信息转换的方法有利于提升系统的性能。文中对以上解决方案进行综述, 并指出海洋光学系统的发展趋势。
Abstract
Ocean optical systems have played an increasingly important role in ocean exploration, development and monitoring. Underwater wireless optical communication and underwater lidar are two types of ocean optical systems that are rapidly developing and have good application prospects. Underwater wireless optical communication is an ideal communication option for short and medium range applications due to high speed and low latency. Underwater lidar is also a highly precise and efficient observation method in applications like deriving geographic information and target detection. However, the complex optical characteristics of seawater channels have brought challenges to the further improvement of the performance of ocean optical systems. In seawater channels, not only strong absorption and scattering, but also dynamic interference factors such as turbulence and bubbles exist in the channel. In order to deal with these challenges, on one hand, signal to noise ratio can be increased with temporal or spatial methods. On the other hand, the conversion between temporal and spatial domains is beneficial to achieving better system performance. This article reviews solutions above and the development trend of ocean optical systems is pointed out.
参考文献

[1] Churnside J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2013, 53(5): 051405.

[2] Xu J. Underwater wireless optical communication: why, what, and how?[J]. Chinese Optics Letters, 2019, 17(10): 100007.

[3] Qu F, Wang Z, Yang L, et al. A journey toward modeling and resolving doppler in underwater acoustic communications[J]. IEEE Communications Magazine, 2016, 54(2): 49-55.

[4] Liu D, Xu P, Zhou Y, et al. Lidar remote sensing of seawater optical properties: experiment and monte carlo simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9489-9498.

[5] Abualhin K. Mapping of underwater seabed morphology of the gaza strip coastal zone using remote sensing technique[J]. Earth Sciences Research Journal, 2016, 20(2): 1-7.

[6] Kerfoot W C, Hobmeier M M, Green S A, et al. Coastal ecosystem investigations with LiDAR (Light Detection and Ranging) and bottom reflectance: lake superior reef threatened by migrating tailings[J]. Remote Sensing, 2019, 11(9): 1076.

[7] Su D, Yang F, Ma Y, et al. Classification of coral reefs in the south china sea by combining Airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2): 815-828.

[8] Alem N, Pellen F, Le Jeune B. New microwave modulation LIDAR scheme for naval mine detection[C]//Electro-Optical Remote Sensing XI. International Society for Optics and Photonics, 2017: 1043403.

[9] Filisetti A, Marouchos A, Martini A, et al. Developments and applications of underwater LiDAR systems in support of ocean science[C]//OCEANS 2018 MTS/IEEE Charleston. IEEE, 2018: 1-10.

[10] Liu Bingyi, Li Ruiqi, Yang Qian, et al. Estimation of global detection depth of spaceborne oceanographic lidar in blue-green spectral region[J]. Infrared and Laser Engineering, 2019, 48(1): 128-133. (in Chinese)

[11] Ottaviani M, Foster R, Gilerson A, et al. Airborne and shipborne polarimetric measurements over open ocean and coastal waters: intercomparisons and implications for spaceborne observations[J]. Remote Sensing of Environment, 2018, 206: 375-390.

[12] Zeng Z, Fu S, Zhang H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2016, 19(1): 204-238.

[13] Wang J, Lu C, Li S, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171-12181.

[14] Hong X, Fei C, Zhang G, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 2019, 44(3): 558-561.

[15] Liu X, Yi S, Zhou X, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937-27947.

[16] Strand M P. Imaging model for underwater range-gated imaging systems[C]//Underwater Imaging, Photography, and Visibility. International Society for Optics and Photonics, 1991: 151-160.

[17] Ooi B S, Sun X, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communications[C]//Optical Fiber Communication Conference. Optical Society of America, 2019: M3I. 1.

[18] Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513-521.

[19] Massot-Campos M, Oliver-Codina G. Optical sensors and methods for underwater 3D reconstruction[J]. Sensors, 2015, 15(12): 31525-31557.

[20] Song Hong, Zhang Yunfei, Wu Chaopeng, et al. Calibration method of underwater phase laser ranging[J]. Infrared and Laser Engineering, 2019, 48(4): 0406008. (in Chinese)

[21] Mullen L J, Contarino V M. Hybrid lidar-radar: seeing through the scatter[J]. IEEE Microwave Magazine, 2000, 1(3): 42-48.

[22] Zha B-T, Yuan H-I, Tan Y-Y. Ranging precision for underwater laser proximity pulsed laser target detection[J]. Optics Communications, 2019, 431: 81-87.

[23] Cao Fengmei, Jin Weiqi, Huang Youwei, et al. Review of underwater opto-electrical imaging technology and equipment (I)-Underwater laser range-gated Imaging technology[J]. Infrared Technology, 2011, 33(2): 63-69. (in Chinese)

[24] McLean E, Burris H, Strand M. Short-pulse range-gated optical imaging in turbid water[J]. Applied Optics, 1995, 34(21): 4343-4351.

[25] He D-M, Seet G G. Divergent-beam lidar imaging in turbid water[J]. Optics and Lasers in Engineering, 2004, 41(1): 217-231.

[26] Busck J. Underwater 3-D optical imaging with a gated viewing laser radar[J]. Optical Engineering, 2005, 44(11): 116001.

[27] Wang Yinfei, Zhang Xiaohui, Zhong Wei, et al. Contrast Signal-to-noise model of underwater full range-gated imaging radar based on high-repetion-rate pulse laser[J]. Chinese Journl of Lasers, 2019, 46(7):21-28.(in Chinese)

[28] Jin D, Ji C, Chu X, et al. Simulation analysis of signal-to-noise ratio of the underwater range gating imaging system[C]//Fifth Symposium on Novel Optoelectronic Detection Technology and Application. International Society for Optics and Photonics, 2019: 1102357.

[29] Zhuang B, Li C, Wu N, et al. First demonstration of 400 Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//2017 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2017: 1-2.

[30] Li J, Huang Z, Liu X, et al. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems[J]. Optics Express, 2015, 23(1): 611-619.

[31] Li X, Chen H, Li S, et al. Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC[C]// 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, 2017: 616-621.

[32] Fei C, Hong X, Zhang G, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060-34069.

[33] Moore K D, Jaffe J S, Ochoa B L. Development of a new underwater bathymetric laser imaging system: L-bath[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(8): 1106-1117.

[34] Jantzi A, Rumbaugh L, Jemison W. Spatial coherence filtering for scatter rejection in underwater laser systems[C]// Ocean Sensing and Monitoring XI. International Society for Optics and Photonics, 2019: 1101406.

[35] Tang S, Dong Y, Zhang X. On link misalignment for underwater wireless optical communications[J]. IEEE Communications Letters, 2012, 10(16): 1688-1690.

[36] Kong M, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426: 94-98.

[37] Kong M, Lin J, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24): 34542-34551.

[38] Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, challenges, and trends[J]. Chinese Optics Letters, 2019, 17(10): 100002.

[39] Al-Rubaiai M, Tan X. Design and development of an LED-based optical communication system with active alignment control[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2016: 160-165.

[40] Cai C, Zhao Y, Zhang J, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C]//Optical Fiber Communication Conference. Optical Society of America, 2019: M3I. 4.

[41] Brandl P, Schidl S, Polzer A, et al. Optical wireless communication with adaptive focus and MEMS-based beam steering[J]. IEEE Photonics Technology Letters, 2013, 25(15): 1428-1431.

[42] Duan X, Song D, Zou J. Steering Co-centered and Co-directional optical and acoustic beams with a water-immersible MEMS scanning mirror for underwater ranging and communication[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6582-6587.

[43] Zhang H, Dong Y, Hui L. On capacity of downlink underwater wireless optical MIMO systems with random sea surface[J]. IEEE Communications Letters, 2015, 19(12): 2166-2169.

[44] Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communications, 2016, 65(3): 1176-1192.

[45] Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8223-8237.

[46] Song Y, Lu W, Sun B, et al. Experimental demonstration of MIMO-OFDM underwater wireless optical communication[J]. Optics Communications, 2017, 403: 205-210.

[47] Chen X, Lyu W, Yu C, et al. Diversity-reception UWOC system using solar panel array and maximum ratio combining[J]. Optics Express, 2019, 27(23): 34284-34297.

[48] Nevis A J, Hilton R J, Taylor Jr J S, et al. Advantages of three-dimensional electro-optic imaging sensors[C]// Detection and Remediation Technologies for Mines and Minelike Targets VIII. International Society for Optics and Photonics, 2003: 225-237.

[49] Sun Jianfeng, Gao Jian, Wei Jingsong, et al. Research development of under-water detection imaging based on streak tube imaging lidar[J]. Infrared and Laser Engineering, 2010, 39(5): 811-814. (in Chinese)

[50] McLean J W. High-resolution 3D underwater imaging[C]// Airborne and in-Water Underwater Imaging. International Society for Optics and Photonics, 1999: 10-19.

[51] Gleckler A D. Multiple-slit streak tube imaging lidar (MS-STIL) applications[C]//Laser Radar Technology and Applications V. International Society for Optics and Photonics, 2000: 266-278.

[52] Ge Mingda, Sun Jianfeng, Wang Tianjiao, et al. Denoising methods for streak tube imaging lidar range imagebased on contrast-modulation method[J]. Infrared and Laser Engineering, 2013, 42(6): 1448-1452. (in Chinese)

[53] Cui Z, Tian Z, Zhang Y, et al. Research on the underwater target imaging based on the streak tube laser lidar[C]// Young Scientists Forum 2017. International Society for Optics and Photonics, 2018: 107103G.

[54] Hui D, Tian J, Lu Y, et al. Streak tube with large work area and small size used in lidar detection system[J]. Acta Optica Sinica, 2015, 35(12): 318-324. ( in Chinese)

[55] Wang C, Yu H-Y, Zhu Y-J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Optics Express, 2017, 25(23): 28783-28793.

[56] Shen J, Wang J, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18): 23565-23571.

[57] Kong M, Chen Y, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087-3097.

[58] Hamza T, Khalighi M-A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless optical communication links[C]//2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2016: 1-5.

[59] Khalighi M-A, Hamza T, Bourennane S, et al. Underwater wireless optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4): 1-10.

[60] Léon P, Roland F, Brignone L, et al. A new underwater optical modem based on highly sensitive Silicon Photomultipliers[C]//OCEANS 2017-Aberdeen. IEEE, 2017: 1-6.

[61] Shen J, Wang J, Yu C, et al. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output[J]. Optics Communications, 2019, 438: 78-82.

[62] Nie Ruijie, Xu Zhiyong, Zhang Qiheng, et al. Model of electrical characteristics of SiPM array and optimization of front-end design for three-dimensional depth sounder[J]. Optics and Precision Engineering, 2012, 20(8): 1661-1668. (in Chinese)

张雨凡, 徐敬. 海洋光学系统中的时空方法[J]. 红外与激光工程, 2020, 49(2): 0203003. Zhang Yufan, Xu Jing. Temporal and spatial methods in ocean optical systems[J]. Infrared and Laser Engineering, 2020, 49(2): 0203003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!