激光与光电子学进展, 2008, 45 (10): 17, 网络出版: 2008-10-24   

高功率飞秒脉冲光纤激光器的研究进展 下载: 606次

Research Progress of High-Power Pulsed Femtosecond Fiber Laser
李潮 1,2,*徐文成 2
作者单位
1 华南师范大学 信息光电子科学与工程学院, 广东, 广州 510631
2 华南理工大学 理学院 物理系,广东, 广州 510640
摘要
啁啾脉冲放大技术是高功率飞秒脉冲光纤激光器采用的主流技术,但如果对激光系统中非线性效应和色散补偿控制不好,脉冲将会发生畸变,影响脉冲的进一步压缩和峰值功率的提高。以这些问题的解决为主线,介绍了近年来在高功率飞秒脉冲研制上所取得的进展,指出以光子晶体光纤等为基础的新型激光功能器件的出现,为啁啾脉冲放大技术提供了新的解决方案。
Abstract
Chirp pulse amplification technology of is critical for fabrication of high power femtosecond fiber laser. However, if the nonlinearity and the compensation of dispersion are not well controlled, the quality of pulse will degrade and it will hamper the further compression and the improvement of power. To solve these problems, research on high power femtosecond fiber laser has been carried out. The appearance of new functional components based on photon crystal fiber provides new ways to the technology of chirp pulse amplification.
参考文献

[1] . E. Bridges, R.W. Boyd, G.P. Agrawal. Effects of beam ellipticity on self-mode locking in lasers[J]. Opt. Lett., 1993, 18(23): 2026-2028.

[2] . Perry, T. Ditmire, B. Stuart. Self-phase modulation in chirped-pulse amplification[J]. Opt. Lett., 1994, 19(24): 2149-2151.

[3] . Sheik-Bahae, A.A. Said, D. J. Hagan et al.. Nonlinear refraction and optical limiting in thick media[J]. Opt. Eng., 1991, 30(8): 1228-1235.

[4] . Shah, M. Fermann. High-power ultrashort-pulse fiber amplifiers[J]. IEEE J. Sel. Top. Quant. Elect., 2007, 22(3): 552-558.

[5] . . Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Opt. Lett., 2007, 32(24): 3495-3497.

[6] . . 90 W average power 100 muJ energy femtosecond fiber chirped-pulse amplification system[J]. Opt. Lett., 2007, 32(15): 2230-2232.

[7] . . High-power ultrafast fiber laser systems[J]. IEEE J. Sel. Top. Quant. Elect., 2006, 12(2): 233-244.

[8] . Roser, J. Rothhard, B. Ortac et al.. 131 W 220 fs fiber laser system[J]. Opt. Lett., 2005, 30(20): 2754-2756.

[9] Yahel E, Hess O, Hardy A A, Ultrashort-pulse high-power Yb3+-doped fiber amplifiers[J]. IEEE J. Quant. Electron., 2007, 43(9): 824~832

[10] . . Fiber-lasers for ultrafast optics[J]. Appl. Phys. B, 1997, 65(2): 259-275.

[11] . A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber[J]. Opt. Exp., 2007, 15(11): 6623-6628.

[12] . . High-power femtosecond Yb-doped fiber amplifier[J]. Opt. Exp., 2002, 10(14): 628-638.

[13] Tunnermann A, Limpert J, Nolte S. Ultrashort pulse fiber lasers and amplifiers in Topics Appl. Phys[M]. Springer: Berlin / Heidelberg, 2004, 96, 35-53

[14] . . High energy femtosecond fiber chirped pulse amplification system with adaptive phase control[J]. Opt. Exp., 2008, 16(8): 5813-5821.

[15] . Shirakawa, J. Ota, M. Musha et al.. Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm[J]. Opt. Exp., 2005, 13(4): 1221-1227.

[16] . Goldberg, J. P. Koplow, D.A.V. Kliner. Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode[J]. Opt. Lett., 1999, 24(10): 673-675.

[17] . Goldberg, J. Koplow, R.P. Moeller et al.. High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber[J]. Opt. Lett., 1998, 23(13): 1037-1039.

[18] . Paschotta, J. Nilsson, A.C. Tropper et al.. Ytterbium-doped fiber amplifiers[J]. Quantum Electron., 1997, 33(7): 1049-1056.

[19] . Dupriez, C. Finot, A. Malinowski et al.. High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs[J]. Opt. Exp., 2006, 14(21): 9611-9616.

[20] . . High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser[J]. Opt. Lett., 2007, 32(18): 2738-2740.

[21] . . High-peak-power femtosecond pulse compression with polarization-maintaining ytterbium-doped fiber amplification[J]. Opt. Lett., 2007, 32(10): 1199-1201.

[22] . W. Nicholson, A. D. Yablon, P. S. Westbrook et al.. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation[J]. Opt. Exp., 2004, 12(13): 3025-3034.

[23] . J. S. de Matos, J. R. Taylor. Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40× pulse compression using air-core fiber and conventional erbium-doped fiber amplifier[J]. Opt. Exp., 2004, 12(3): 405-409.

[24] . J. S. de Matos, J. R. Taylor. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber[J]. Opt. Exp., 2003, 11(22): 2832-2837.

[25] . Galvanauskas, M. E. Fermann, D. Harter et al.. All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings[J]. Appl. Phys. Lett., 1995, 66(9): 1053-1055.

[26] . E. Britton, N. G. R. Broderick, D. J. Richardson et al.. Wavelength-tunable high-power picosecond pulses from a fiber-pumped diode-seeded high-gain parametric amplifier[J]. Opt. Lett., 1998, 23(20): 1588-1590.

[27] . Takayanagi, T. Sugiura, M.Yoshida et al.. 1.0-1.7 μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber[J]. IEEE Photon. Tech. Lett., 2006, 18(21): 2284-2286.

[28] . W. Nicholson, A. D. Yablon, P. S. Westbrook et al.. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation[J]. Opt. Exp., 2004, 12(13): 3025-3034.

[29] . J. S. de Matos, J. R. Taylor. Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40× pulse compression using air-core fiber and conventional erbium-doped fiber amplifier[J]. Opt. Exp., 2004, 12(3): 405-409.

[30] . C. Knight, T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547-1549.

[31] . Lim, F. O. Ilday, F. W. Wise. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control[J]. Opt. Exp., 2002, 10(25): 1497-1502.

[32] . Limpert, T. Schreiber, S. Nolte et al.. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Opt. Exp., 2003, 11(7): 818-823.

[33] . G. Ouzounov, F. R. Ahmad, D. Müller et al.. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers[J]. Science, 2003, 301(5640): 1702-1704.

[34] . . Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation[J]. Appl. Phys. Lett., 2008, 92(6): 061106.

李潮, 徐文成. 高功率飞秒脉冲光纤激光器的研究进展[J]. 激光与光电子学进展, 2008, 45(10): 17. Li Chao, Xu Wencheng. Research Progress of High-Power Pulsed Femtosecond Fiber Laser[J]. Laser & Optoelectronics Progress, 2008, 45(10): 17.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!