强激光与粒子束, 2012, 24 (1): 225, 网络出版: 2012-02-14  

低速度零散会切电子枪的设计和数值仿真

Design and simulation of low-velocity-spread cusp electron gun
作者单位
电子科技大学 物理电子学院, 成都 610054
摘要
根据拉格朗日方程对电子在平滑会切磁场中的径向波动与速度零散的关系进行讨论。运用Matlab, Magic软件相互结合的方法设计电子枪结构和磁场。用Matlab程序模拟单电子在给定电场、磁场中的运动, 分析了单电子径向速度对零散的影响, 并优化磁场分布。设计的磁场可以有效地减小单电子束径向速度, 降低电子束速度零散。用Magic软件对电流为1 A、能量为30 keV的电子束在优化磁场中的运动进行仿真, 得到的电子束速度比约为2, 速度零散小于2.5%, 轴向速度零散小于8.5%。
Abstract
The Lagrangian formula is used to analyze the velocity spread and beam ripple of electrons in smooth cusp magnetic field. The characteristics of the cusp electron gun including cusp magnets are calculated by co-simulation employing softwares Matlab and Magic. A Matlab code is written to simulate the motion of single electron in a given electric field, and a given magnetic field, which shows the relationship between the electron’s radial velocity and velocity spread. The cusp magnetic field optimized accordingly can reduce the radial velocity at the anode region, which is the key to achieve small beam velocity spread. When the cusp electron gun is designed to generate a 1 A, 30 keV beam, an optimized velocity spread less than 2.5% can be obtained with an axial velocity spread less than 8.5% and a velocity ratio about 2.
参考文献

[1] Li Hongfu, Wang Wenxiang, Du Pinzhong. A study on third harmonic gyrotron[C]//25th International Conference on Infrared and Millimeter Waves. 2000.

[2] Chu K R, Chen H Y, Hung C L, et al. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier[J]. IEEE Trans on Plasma Science, 1999, 27(2):391-404.

[3] 赵青, 李宏福, 任同, 等.大回旋cusp电子束数值模拟[J].强激光与粒子束, 2006, 18(4):631-634.(Zhao Qing, Li Hongfu, Ren Tong, et al. Numerical simulation of a large orbit gyrotron cusp electron beam. High Power Laser and Particle Beams, 2006, 18(4):631-634)

[4] 邹峰, 薛谦忠, 刘濮鲲.大回旋电子束双磁会切电子枪的设计[J].强激光与粒子束, 2007, 19(3):463-466.(Zou Feng, Xue Qianzhong, Liu Pukun. Design of large orbit gyrotron electron beam double-cusp gun. High Power Laser and Particle Beams, 2007, 19(3):463-466)

[5] Rhee M J, Destler W W. Relativistic electron dynamics in a cusped magnetic field[J]. Phys Fluids, 1974, 17(8):1574-1581.

[6] Donaldson C R, He Wenlong, Cross A W, et al. Design and numerical optimization of a cusp-gun-based electron beam for millimeter-wave gyro-devices[J]. IEEE Trans on Plasma Science, 2009, 37(11):2153-2157.

[7] Wang Jianxun, Luo Yong, Luhmann N C. The simulation of a high-power velocity-spread space-charge-limited(SCL) cusp gun[J]. IEEE Trans on Plasma Science, 2010, 38(12):3356-3362.

[8] Sabchevski S, Idehara T, Ogawa I, et al. Computer simulation of axis-encircling beams generated by an electron gun with a permanent magnet system[J]. International Journal of Infrared and Millimeter Waves, 2000, 21(8):1191-1209.

马强, 蒙林, 殷勇, 严文韬. 低速度零散会切电子枪的设计和数值仿真[J]. 强激光与粒子束, 2012, 24(1): 225. Ma Qiang, Meng Lin, Yin Yong, Yan Wentao. Design and simulation of low-velocity-spread cusp electron gun[J]. High Power Laser and Particle Beams, 2012, 24(1): 225.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!