光通信研究, 2012 (6): 17, 网络出版: 2012-12-24  

400 Gbit/s全光OFDM高速系统性能研究

Performances of 400 Gbit/s AO-OFDM high-rate communication systems
作者单位
华中科技大学 国家光电实验室,湖北 武汉 430074
摘要
AO-OFDM (全光正交频分复用) 技术是利用光处理方式实现多载波和OIDFT (光离散傅里叶逆变换)/ ODFT (光离散傅里叶变换),其优势在于能提高处理速率、降低能量消耗。文章结合AO-OFDM技术和单通道100 Gbit/s DP-QPSK (双偏振四相相移键控) 高阶调制技术,实现了谱效率达到2.7 bit/s/Hz 的400 Gbit/s 高速传输系统, 在色散完全补偿情况下,实现了最大SEDP (谱效率-距离积重)为3 564 km·bit/s/Hz的传输,并利用插入12.5%循环前缀的方式,使得系统色散容限达到70 ps/nm。实验结果表明,采用AO-OFDM技术的系统具有优良的传输性能,可以作为下一代400 Gbit/s高速传输系统实际应用的方案。
Abstract
The All-Optical Orthogonal Frequency-Division Multiplexing (AO-OFDM) technology is used to implement multicarriers and Optical Inverse Discrete Fourier Transform (OIDFT)/Optical Discrete Fourier Transform (ODFT) by way of optical processing, which has the advantages of improving the processing rate and reducing power consumption. By using the AO-OFDM technology in combination with the single-channel 100 Gbit/s DP-QPSK high-order modulation technology, we can realize a 400 Gbit/s transmission system with a spectral efficiency of 2.7 bit/s/Hz and when the chromatic dispersion is completely compensated, we achieve a transmission with the maximum Spectral Efficiency-Distance Product (SEDP) of 3 564 km·bit/s/Hz. With 12.5% Optical Cyclic Prefixes (OCPs) inserted, the system dispersion tolerance reaches 70 ps/nm. The experimental results show that using the AO-OFDM technology, the system has better performances and can be used as a practical application scheme for next generation 400 Gbit/s transmission systems.
参考文献

[1] Lowery A J, Du L B. Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years [J]. Optical Fiber Technology, 2011, 17(5): 421-438.

[2] Healy T, Garcia Gunning F C, Ellis A D, et al. Multi-wavelength source using low drive-voltage amplitude modulators for optical communications [J]. Opt Express, 2007, 15(6): 2981-2986.

[3] Kawanishi T, Sakamoto T, Shinada S, et al. Optical frequency comb generator using optical fiber loops with single-sideband modulation [J]. IEICE Electronics Express, 2004, 1(8): 217-221.

[4] Dupuis N, Doerr C R, Liming Z, et al. InP-Based Comb Generator for Optical OFDM [J]. Journal of Lightwave Technology, 2012, 30(4): 466-472.

[5] Lowery A J, Du L. All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators [J]. Opt Express, 2011, 19(17): 15696-15704.

[6] 李源, 王凯, 李蔚, 等. 一种基于光耦合器的全光正交频分复用系统和器件 [J]. 中国激光, 2010, 37(4): 1022-1027.

[7] Li W, Liang X, Ma W, et al. A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems [J]. Optical Fiber Technology, 2010, 16(1): 5-11.

唐静, 夏珉, 李微, 杨克成, 刘德明, 黄本雄. 400 Gbit/s全光OFDM高速系统性能研究[J]. 光通信研究, 2012, 38(6): 17. Tang Jing, Xia Min, Li Wei, Yang Kecheng, Liu Deming, Huang Benxiong. Performances of 400 Gbit/s AO-OFDM high-rate communication systems[J]. Study On Optical Communications, 2012, 38(6): 17.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!