Collection Of theses on high power laser and plasma physics, 2014, 12 (1): 080001, Published Online: May. 27, 2017  

Advances in Target and Beam Alignment Unit Technologies of High Power Laser Drivers

Author Affiliations
中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
Abstract
Target and beam alignment unit is one of the core parts of high power laser drivers and plays a crucial role in the adjustment of target position and pose, the laser pointing and so on. Combined the alignment accuracy requirements of the laser driver with the physics experiment implement, basic functions of the target and beam alignment unit can be acquired to meet the requirements of physics experiments using the design and adjustment of the optical-mechanical-electronic systems. However, with the increasing number of the main lasers, slewing of multi-beams and positioning with high accuracy have become the goal of developing target and beam alignment unit. Present studies on the target and beam alignment unit of both domestic and international high power laser drivers are reviewed, a universal method for the alignment unit design is investigated and main issues in the development of the target and beam alignment unit are also analyzed.
References

[1] E I Moses. Ignition on the National Ignition Facility: a path towards inertial fusion energy[J]. Nuclear Fusion, 2009, 49(10): 104022.

[2] C A Haynam, R A Sacks, P J Wegner, et al.. The national ignition facility 2007 laser performance status[J]. Journal of Physics: Conference Series, 2008, 112(3): 032004.

[3] N Fleurot, C Cavailler, J L Bourgade. The laser mégajoule (LMJ) project dedicated to inertial confinement fusion: development and construction status[J]. Fusion Engineering and Design, 2005, 74(14): 147-154.

[4] Gangyao Xiao, Dianyuan Fan, Shiji Wang, et al.. SG-II solid-state laser ICF system[C]. SPIE, 1999,3492: 890-895.

[5] Z Wanguo, Z Xiaomin, W Xiaofeng, et al.. Status of the SG-III solid-state laser facility[J]. Journal of Physics: Conference Series, 2008, 112(3): 032009.

[6] Gao Yanqi, Ma Weixin, Zhu Baoqiang, et al.. Status of the SG-II-UP laser facility[C]. IEEE Photonics Conference (IPC), 2013. 73-74.

[7] J D Lindl, P Amendt, R L Berger, et al.. The physics basis for ignition using indirect-drive targets on the national ignition facility[J]. Physics of Plasmas, 2004, 11(2): 339.

[8] 黄宏一, 顾震, 范滇元. 神光装置的靶瞄准系统[J]. 中国激光, 1998, 25(8): 711-714.

    Huang Hongyi, Gu Zhen, Fan Dianyuan. Shenguang-target pointing system[J]. Chinese J Lasers, 1998, 25(8): 711-714.

[9] 赵东峰, 王利, 林尊琪, 等. 在神光II 装置第九路系统开展351 nm 波长激光高通量传输的实验研究[J]. 中国激光, 2011, 38(7): 0702001.

    Zhao Dongfeng, Wang Li, Lin Zunqi, et al.. Experimental study of 351 nm propagation with high fluence on No.9 system of SG-II laser facility[J]. Chinese J Lasers, 2011, 38(7): 0702001.

[10] D H Kalantar, P Di Nicola, N Shingleton, et al.. An overview of target and diagnostic alignment at the national ignition facility[C]. SPIE, 2012, 8505: 850509.

[11] P Wegner, J Auerbach, T Biesiada, et al.. NIF final optics system: frequency conversion and beam conditioning[C]. SPIE, 2004, 5341: 180-189.

[12] P Di Nicola, D Kalantar, Mccarville T, et al.. Beam and target alignment at the national ignition facility using the target alignment sensor (TAS)[C]. SPIE, 2012, 8505: 85050B.

[13] S J Boege, E S Bliss, C J Chocol, et al.. NIF pointing and centering systems and target alignment using a 351-nm laser source[C]. SPIE, 1997, 3047: 248-258.

[14] M Luttmann, V Denis, C Lanternier, et al.. Laser megajoule alignment to target center[C]. SPIE, 2011, 7916: 79160N.

[15] M Geitzholz, C Lanternier. Review of laser mega joule target area: design and processes[J]. Journal de Physique IV (Proceedings), 2006, 133: 631-636.

[16] 黄宏一, 丘悦, 范滇元. 靶瞄准中的图像处理[J]. 中国激光, 1998, 25(7): 649-652.

    Huang Hongyi, Qiu Yue, Fan Dianyuan. Image processing in target pointing[J]. Chinese J Lasers, 1998, 25(7): 649-652.

[17] 戴亚平, 黄关龙, 李学春, 等. 用相关测量技术实现精确靶定位技术研究[J]. 中国激光, 2000, 27(2): 135-139.

    Dai Yaping, Huang Guanlong, Li Xuechun, et al.. Precision target positioning by digital speckle correlation measurement [J].Chinese J Lasers, 2000, 27(2): 135-139.

[18] R R Leach, A Conder, O Edwards, et al.. Hohlraum target alignment from X-ray detector images using starburst design patterns[C]. SPIE, 2011, 7916: 791616.

[19] 金晓峰, 张鹏, 刘春华, 等. 远距离高分辨激光成像雷达技术[J]. 激光与光电子学进展, 2013, 50(5): 050002.

    Jin Xiaofeng, Zhang Peng, Liu Chunhua, et al.. Techniques on long-range and high-resolution imaging lidar[J]. Laser & Optoelectronics Progress, 2013, 50(5): 050002.

[20] 金国藩, 李景镇. 激光测量学[M]. 北京: 科学出版社, 1998.

    Jin Guofan, Li Jingzhen. Laser Metrology[M]. Beijing: Science Press, 1998.

[21] 唐歌实. 深空测控无线电测量技术[M]. 北京: 国防工业出版社, 2012.

    Tang Geshi. Radiometric Measuring Techniques for Deep Space Navigation[M]. Beijing: National Defense Industry Press, 2012.

[22] 李红, 王东方, 邹伟, 等. 高功率激光装置光束自动准直系统设计[J]. 中国激光, 2013, 40(10): 1002003.

    Li Hong, Wang Dongfang, Zou Wei, et al.. Design of high power laser beam automatic alignment system[J]. Chinese J Lasers, 2013, 40(10): 1002003.

[23] R Kodama, PA Norreys, K Mima, et al.. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition [J]. Nature ,2001,412(6849): 798-802.

[24] K A Tanaka, R Kodama, H Fujita, et al.. Studies of ultra-intense laser plasma interactions for fast ignition[J]. Physics of Plasmas, 2000,7(5): 2014-2022.

[25] Jiayong Zhong, Yutong Li, Xiaogang Wang, et al.. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6(12): 984.

[26] X Liu, Y T Li, Y Zhang, et al.. Collisionless shockwaves formed by counter streaming laser produced plasmas[J]. New Journal of Physics, 2011,13(9): 093001.

[27] C P J Barty, M Key, J Britten, et al.. An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments [J]. Nuclear Fusion, 2004, 44(12): S266-S275.

[28] J K Crane, G Tietbohl, P Arnold, et al.. Progress on converting a NIF quad to eight, petawatt beams for advanced radiography[J]. Journal of Physics: Conference Series, 2010, 244(3): 032003.

[29] Zhaoyang Jiao, Yanli Zhang, Junyong Zhang, et al.. Spatio-temporal evolution of the optical field on a hohlraum wall at the rising edge of a flat-topped pulse[J]. High Power Laser Science and Engineering, 2013, 1(2): 88-93.

[30] J L Kline, D A Callahan, S H Glenzer, et al.. Hohlraum energetics scaling to 520 TW on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20(5): 056314.

[31] S W Haan, J D Lindl, D A Callahan, et al.. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Physics of Plasmas, 2011, 18(5): 051001.

[32] Ke Lan, Jie Liu, Dongxian Lai, et al.. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at hohlraumto-capsule radius ratio of 5.14[J]. Physics of Plasmas, 2014, 21(1): 010704.

[33] A Bayramian, S Aceves, T Anklam, et al.. Compact, efficient laser systems required for laser inerial fusion energy[J]. Fusion Science and Technology, 2011, 60(1): 28-48.

Ren Lei, Zhao Dongfeng, Zhu Jianqiang. Advances in Target and Beam Alignment Unit Technologies of High Power Laser Drivers[J]. Collection Of theses on high power laser and plasma physics, 2014, 12(1): 080001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!